Generalized Persistence for Equivariant Operators in Machine Learning

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mattia G. Bergomi, M. Ferri, A. Mella, Pietro Vertechi
{"title":"Generalized Persistence for Equivariant Operators in Machine Learning","authors":"Mattia G. Bergomi, M. Ferri, A. Mella, Pietro Vertechi","doi":"10.3390/make5020021","DOIUrl":null,"url":null,"abstract":"Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce an original class of neural network layers based on a generalization of topological persistence. The proposed persistence-based layers allow the users to encode specific data properties (e.g., equivariance) easily. Additionally, these layers can be trained through standard optimization procedures (backpropagation) and composed with classical layers. We test the performance of generalized persistence-based layers as pooling operators in convolutional neural networks for image classification on the MNIST, Fashion-MNIST and CIFAR-10 datasets.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"5 1","pages":"346-358"},"PeriodicalIF":4.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce an original class of neural network layers based on a generalization of topological persistence. The proposed persistence-based layers allow the users to encode specific data properties (e.g., equivariance) easily. Additionally, these layers can be trained through standard optimization procedures (backpropagation) and composed with classical layers. We test the performance of generalized persistence-based layers as pooling operators in convolutional neural networks for image classification on the MNIST, Fashion-MNIST and CIFAR-10 datasets.
机器学习中等变算子的广义持久性
人工神经网络可以学习复杂的、显著的数据特征来完成给定的任务。另一方面,基于数学的方法,如拓扑数据分析,允许用户设计完全了解数据约束和对称性的分析管道。基于拓扑持久性的推广,我们引入了一类原始的神经网络层。建议的基于持久性的层允许用户轻松地对特定的数据属性(例如,等价性)进行编码。此外,这些层可以通过标准优化过程(反向传播)进行训练,并与经典层组合在一起。我们在MNIST、Fashion-MNIST和CIFAR-10数据集上测试了广义持久性层作为卷积神经网络中图像分类池化算子的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信