Geographically weighted Poisson regression models with different kernels: Application to road traffic accident data

Q4 Mathematics
Ghanim Al-Hasani, M. Asaduzzaman, A. Soliman
{"title":"Geographically weighted Poisson regression models with different kernels: Application to road traffic accident data","authors":"Ghanim Al-Hasani, M. Asaduzzaman, A. Soliman","doi":"10.1080/23737484.2020.1869628","DOIUrl":null,"url":null,"abstract":"Abstract Geographically weighted Poisson regression (GWPR) models are the class of spatial count regression models that capture the localization effect on various influencing factors on the dependent variable. The main challenge with the GWPR models is to set appropriate kernel function to give weights for each neighboring point during the model calibration. In this article, we consider GWPR models for many different kernel functions, including box-car, bi-square, tri-cube, exponential, and Gaussian function. Likelihood function, parameter estimation, and model selection criteria have been shown in details. We applied the model formulation to the road traffic accident (RTA) data in Oman as the country is one of the largest RTA-prone countries in the Gulf region. Akaike information criterion, corrected Akaike information criterion, and geographically weighted deviance have been used to assess the model fitting. The model with the exponential kernel weighted function provides the best fit for the data and captures the spatial heterogeneity and factors better with the exponential kernel weighting function.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"70 1","pages":"166 - 181"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2020.1869628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Geographically weighted Poisson regression (GWPR) models are the class of spatial count regression models that capture the localization effect on various influencing factors on the dependent variable. The main challenge with the GWPR models is to set appropriate kernel function to give weights for each neighboring point during the model calibration. In this article, we consider GWPR models for many different kernel functions, including box-car, bi-square, tri-cube, exponential, and Gaussian function. Likelihood function, parameter estimation, and model selection criteria have been shown in details. We applied the model formulation to the road traffic accident (RTA) data in Oman as the country is one of the largest RTA-prone countries in the Gulf region. Akaike information criterion, corrected Akaike information criterion, and geographically weighted deviance have been used to assess the model fitting. The model with the exponential kernel weighted function provides the best fit for the data and captures the spatial heterogeneity and factors better with the exponential kernel weighting function.
不同核的地理加权泊松回归模型:在道路交通事故数据中的应用
地理加权泊松回归(GWPR)模型是一类空间计数回归模型,它捕捉了因变量上各种影响因素的局部化效应。GWPR模型的主要挑战是在模型标定过程中如何设置合适的核函数来赋予每个相邻点的权值。在本文中,我们将考虑许多不同核函数的GWPR模型,包括箱形函数、双平方函数、三立方函数、指数函数和高斯函数。似然函数、参数估计和模型选择标准已详细说明。我们将模型公式应用于阿曼的道路交通事故(RTA)数据,因为该国是海湾地区最大的RTA易发国家之一。采用赤池信息准则、修正赤池信息准则和地理加权偏差评价模型拟合。采用指数核加权函数的模型对数据的拟合效果最好,能更好地捕捉到空间异质性和影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信