Vibration Characteristics Diagnosis and Estimation of Fault Sizes in Rolling Contact Bearings: A Model-Based Approach

IF 2 Q2 ENGINEERING, MULTIDISCIPLINARY
I. Jamadar
{"title":"Vibration Characteristics Diagnosis and Estimation of Fault Sizes in Rolling Contact Bearings: A Model-Based Approach","authors":"I. Jamadar","doi":"10.1115/1.4051176","DOIUrl":null,"url":null,"abstract":"A novel model-based technique is presented in this paper for the estimation of the fault size in different components of rolling contact bearings. A detailed dimensional analysis of the problem is carried out and an experimental methodology using the Box–Behnken design is applied to generate the experimental data set. First, the analysis of the vibration acceleration amplitude at fault frequency, its dependence on the bearing operating, and fault parameters using the obtained vibration data set are carried out by statistical analysis of variance. Numerical equations are developed then using the experimental data set for the correlation of the vibration acceleration amplitude in the frequency domain with the fault sizes based on the developed dimensionless terms. A hybrid backpropagation neural network integrating genetic algorithm is also developed to check the computational performance of the developed model equations. Validation of the proposed method is carried experimentally also for three seeded defect sizes on the outer race, inner race, and rolling element. The maximum model accuracy observed is for the inner race defect case with a predictive accuracy of 99.44% and for the roller defect case, it is 98.77%. The deviance observed for the model predictive performance is maximum for the outer race defect case with the least accuracy of 90.47% amongst all.","PeriodicalId":52294,"journal":{"name":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","volume":"84 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel model-based technique is presented in this paper for the estimation of the fault size in different components of rolling contact bearings. A detailed dimensional analysis of the problem is carried out and an experimental methodology using the Box–Behnken design is applied to generate the experimental data set. First, the analysis of the vibration acceleration amplitude at fault frequency, its dependence on the bearing operating, and fault parameters using the obtained vibration data set are carried out by statistical analysis of variance. Numerical equations are developed then using the experimental data set for the correlation of the vibration acceleration amplitude in the frequency domain with the fault sizes based on the developed dimensionless terms. A hybrid backpropagation neural network integrating genetic algorithm is also developed to check the computational performance of the developed model equations. Validation of the proposed method is carried experimentally also for three seeded defect sizes on the outer race, inner race, and rolling element. The maximum model accuracy observed is for the inner race defect case with a predictive accuracy of 99.44% and for the roller defect case, it is 98.77%. The deviance observed for the model predictive performance is maximum for the outer race defect case with the least accuracy of 90.47% amongst all.
滚动接触轴承振动特性诊断与故障大小估计:基于模型的方法
本文提出了一种基于模型的滚动接触轴承不同部件故障大小估计方法。对问题进行了详细的量纲分析,并采用Box-Behnken设计的实验方法来生成实验数据集。首先,利用得到的振动数据集,通过方差统计分析,分析故障频率处的振动加速度幅值、加速度幅值与轴承运行状态的相关性以及故障参数;然后利用实验数据集,根据所建立的无量纲项,建立了振动加速度幅值与故障大小在频域的相关性的数值方程。为了验证所建立的模型方程的计算性能,还建立了一种结合遗传算法的混合反向传播神经网络。并对外圈、内圈和滚动体上的三种播种缺陷尺寸进行了实验验证。观察到的最大模型精度是内圈缺陷情况的预测精度为99.44%,轧辊缺陷情况的预测精度为98.77%。外圈缺陷情况下模型预测性能偏差最大,准确率最低,为90.47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
9.10%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信