Discriminants of theta-representations

Vladimiro Benedetti, L. Manivel
{"title":"Discriminants of theta-representations","authors":"Vladimiro Benedetti, L. Manivel","doi":"10.2422/2036-2145.202205_014","DOIUrl":null,"url":null,"abstract":"Tevelev has given a remarkable explicit formula for the discriminant of a complex simple Lie algebra, which can be defined as the equation of the dual hypersurface of the minimal nilpotent orbit, or of the so-called adjoint variety. In this paper we extend this formula to the setting of graded Lie algebras, and express the equation of the corresponding dual hypersurfaces in terms of the reflections in the little Weyl groups, the associated complex reflection groups. This explains for example why the codegree of the Grassmannian $G(4, 8)$ is equal to the number of roots of $\\mathfrak{e}_7$ .","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202205_014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tevelev has given a remarkable explicit formula for the discriminant of a complex simple Lie algebra, which can be defined as the equation of the dual hypersurface of the minimal nilpotent orbit, or of the so-called adjoint variety. In this paper we extend this formula to the setting of graded Lie algebras, and express the equation of the corresponding dual hypersurfaces in terms of the reflections in the little Weyl groups, the associated complex reflection groups. This explains for example why the codegree of the Grassmannian $G(4, 8)$ is equal to the number of roots of $\mathfrak{e}_7$ .
表示的判别式
Tevelev给出了复单李代数判别式的显式公式,该公式可以定义为最小幂零轨道的对偶超曲面方程,或所谓的伴随变。本文将这一公式推广到阶李代数的集合中,并将相应的对偶超曲面用小Weyl群中的反射来表示,即相关的复反射群。这解释了为什么格拉斯曼函数$G(4,8)$的余度等于$\mathfrak{e}_7$的根的个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信