Numerical solution of third-order boundary value problems by using a two-step hybrid block method with a fourth derivative

IF 0.9 Q3 MATHEMATICS, APPLIED
Mufutau Ajani Rufai, Higinio Ramos
{"title":"Numerical solution of third-order boundary value problems by using a two-step hybrid block method with a fourth derivative","authors":"Mufutau Ajani Rufai,&nbsp;Higinio Ramos","doi":"10.1002/cmm4.1166","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a two-step hybrid block method (TSHBM) with a fourth derivative for solving third-order boundary value problems in ordinary differential equations. The mathematical formulation of the proposed approach depends on interpolation and collocation techniques. The order of convergence of the TSHBM is showed to be seventh-order convergent and zero-stable. A few numerical examples are given to evaluate its performance. Numerical outcomes show that the TSHBM scheme is more efficient than some existing numerical techniques.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1166","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

This article proposes a two-step hybrid block method (TSHBM) with a fourth derivative for solving third-order boundary value problems in ordinary differential equations. The mathematical formulation of the proposed approach depends on interpolation and collocation techniques. The order of convergence of the TSHBM is showed to be seventh-order convergent and zero-stable. A few numerical examples are given to evaluate its performance. Numerical outcomes show that the TSHBM scheme is more efficient than some existing numerical techniques.

用带四阶导数的两步混合块法数值解三阶边值问题
本文提出了一种求解三阶常微分方程边值问题的四阶二阶混合块法。该方法的数学公式依赖于插值和配置技术。证明了TSHBM的收敛阶为七阶收敛和零稳定。给出了几个数值算例来评价其性能。数值结果表明,TSHBM格式比现有的一些数值方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信