Physical Human-Robot Interaction Coupled with a Moving Environment or Target: Contact and Track

Hsieh-Yu Li, Ishara Paranawithana, Liangjing Yang, U-Xuan Tan
{"title":"Physical Human-Robot Interaction Coupled with a Moving Environment or Target: Contact and Track","authors":"Hsieh-Yu Li, Ishara Paranawithana, Liangjing Yang, U-Xuan Tan","doi":"10.1109/COASE.2018.8560702","DOIUrl":null,"url":null,"abstract":"There is an increasing number of applications in physical human-robot interaction (pHRI) where the end-effector of the robot is compliant in response to the force exerted by the human. The force sensor is normally mounted with an instrument on the end-effector to measure the human operational force. However, when the robot is in contact with the human and an environment simultaneously, the force sensor reading includes both the human and the environmental force resulting in ineffective contacting interaction within these three objects (robot, human and environment). In addition, if the environment is moving, it is more challenging for the operator to track the target with the robot. Therefore, in this paper, we address the issue of pHRI coupled with a moving environment. More specifically, we use a collaborative robot with an ultrasound probe as an illustration due to its sophisticated condition: the operator needs to contact the environment using a sufficient force to get clearer images and track the moving target. The proposed control scheme is employed using only one force sensor to guarantee a stable physical interaction within three objects and provide the compliant and intuitive operation for human. Experiments with a collaborative robot are conducted to evaluate the effectiveness of the proposed controller.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"17 1","pages":"43-49"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There is an increasing number of applications in physical human-robot interaction (pHRI) where the end-effector of the robot is compliant in response to the force exerted by the human. The force sensor is normally mounted with an instrument on the end-effector to measure the human operational force. However, when the robot is in contact with the human and an environment simultaneously, the force sensor reading includes both the human and the environmental force resulting in ineffective contacting interaction within these three objects (robot, human and environment). In addition, if the environment is moving, it is more challenging for the operator to track the target with the robot. Therefore, in this paper, we address the issue of pHRI coupled with a moving environment. More specifically, we use a collaborative robot with an ultrasound probe as an illustration due to its sophisticated condition: the operator needs to contact the environment using a sufficient force to get clearer images and track the moving target. The proposed control scheme is employed using only one force sensor to guarantee a stable physical interaction within three objects and provide the compliant and intuitive operation for human. Experiments with a collaborative robot are conducted to evaluate the effectiveness of the proposed controller.
与移动环境或目标耦合的物理人机交互:接触和跟踪
在物理人机交互(pHRI)中,机器人的末端执行器响应人施加的力是顺应的应用越来越多。力传感器通常在末端执行器上安装一个仪器来测量人的操作力。然而,当机器人同时与人和环境接触时,力传感器的读数包括人和环境的力,导致机器人、人和环境这三个对象之间的接触交互无效。此外,如果环境是移动的,那么操作员用机器人跟踪目标就更具挑战性。因此,在本文中,我们解决了pHRI与移动环境耦合的问题。更具体地说,由于其复杂的条件,我们使用带有超声波探头的协作机器人作为说明:操作员需要使用足够的力与环境接触以获得更清晰的图像并跟踪移动目标。所提出的控制方案仅使用一个力传感器,保证了三个物体之间稳定的物理交互,为人类提供了顺从和直观的操作。通过一个协作机器人的实验来评估所提出的控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信