Dealing with Interdependencies and Uncertainty in Multi-Channel Advertising Campaigns Optimization

Alessandro Nuara, Nicola Sosio, F. Trovò, Maria Chiara Zaccardi, N. Gatti, Marcello Restelli
{"title":"Dealing with Interdependencies and Uncertainty in Multi-Channel Advertising Campaigns Optimization","authors":"Alessandro Nuara, Nicola Sosio, F. Trovò, Maria Chiara Zaccardi, N. Gatti, Marcello Restelli","doi":"10.1145/3308558.3313470","DOIUrl":null,"url":null,"abstract":"In 2017, Internet ad spending reached 209 billion USD worldwide, while, e.g., TV ads brought in 178 billion USD. An Internet advertising campaign includes up to thousands of sub-campaigns on multiple channels, e.g., search, social, display, whose parameters (bid and daily budget) need to be optimized every day, subject to a (cumulative) budget constraint. Such a process is often unaffordable for humans and its automation is crucial. As also shown by marketing funnel models, the sub-campaigns are usually interdependent, e.g., display ads induce awareness, increasing the number of impressions-and, thus, also the number of conversions-of search ads. This interdependence is widely exploited by humans in the optimization process, whereas, to the best of our knowledge, no algorithm takes it into account. In this paper, we provide the first model capturing the sub-campaigns interdependence. We also provide the IDIL algorithm, which, employing Granger Causality and Gaussian Processes, learns from past data, and returns an optimal stationary bid/daily budget allocation. We prove theoretical guarantees on the loss of IDIL w.r.t. the clairvoyant solution, and we show empirical evidence of its superiority in both realistic and real-world settings when compared with existing approaches.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In 2017, Internet ad spending reached 209 billion USD worldwide, while, e.g., TV ads brought in 178 billion USD. An Internet advertising campaign includes up to thousands of sub-campaigns on multiple channels, e.g., search, social, display, whose parameters (bid and daily budget) need to be optimized every day, subject to a (cumulative) budget constraint. Such a process is often unaffordable for humans and its automation is crucial. As also shown by marketing funnel models, the sub-campaigns are usually interdependent, e.g., display ads induce awareness, increasing the number of impressions-and, thus, also the number of conversions-of search ads. This interdependence is widely exploited by humans in the optimization process, whereas, to the best of our knowledge, no algorithm takes it into account. In this paper, we provide the first model capturing the sub-campaigns interdependence. We also provide the IDIL algorithm, which, employing Granger Causality and Gaussian Processes, learns from past data, and returns an optimal stationary bid/daily budget allocation. We prove theoretical guarantees on the loss of IDIL w.r.t. the clairvoyant solution, and we show empirical evidence of its superiority in both realistic and real-world settings when compared with existing approaches.
多渠道广告活动优化中的相互依赖和不确定性处理
2017年,全球互联网广告支出达到2090亿美元,而电视广告收入为1780亿美元。互联网广告活动包括多达数千个在多个渠道(如搜索、社交、展示)上的子活动,其参数(投标和每日预算)需要每天优化,受(累积)预算约束。这样的过程对人类来说往往是负担不起的,因此自动化是至关重要的。正如营销漏斗模型所显示的那样,子活动通常是相互依存的,例如,展示广告诱导意识,增加印象数量,从而也增加了搜索广告的转换数量。这种相互依存关系在优化过程中被人类广泛利用,然而,据我们所知,没有算法考虑到这一点。在本文中,我们提供了第一个捕获子活动相互依赖关系的模型。我们还提供了IDIL算法,该算法采用格兰杰因果关系和高斯过程,从过去的数据中学习,并返回最优的固定出价/每日预算分配。我们证明了在千里眼解决方案中对IDIL损失的理论保证,并且与现有方法相比,我们展示了其在现实和现实世界设置中的优越性的经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信