FinFET Based Tunable Analog Circuit: Design and Analysis at Technology

Q4 Engineering
R. Kushwah, S. Akashe
{"title":"FinFET Based Tunable Analog Circuit: Design and Analysis at Technology","authors":"R. Kushwah, S. Akashe","doi":"10.1155/2013/165945","DOIUrl":null,"url":null,"abstract":"We included a designing of low power tunable analog circuits built using independently driven FinFETs devices, where the controlling of the back gate provide the output on the front gate. We show that this could be an effective solution to conveniently tune the output of bulk CMOS analog circuits particularly for Schmitt trigger and operational transconductance amplifier circuits. FinFET devices can be used to increase the performance by reducing the leakage current and power dissipation, because front and back gates both are independently controlled. FinFET device has a higher controllability, resulting relatively high ratio. In this paper, we proposed a tunable analog circuit such as CMOS amplifier circuit, Schmitt trigger circuit, and operational transconductance amplifier circuit, these circuit blocks are necessary for low noise high performance ICs for analog applications. Gain, phase, group delay, and output response of analog tunable circuits have been discussed in this paper. The proposed FinFET based analog tunable circuits have been designed using Cadence Virtuoso tool at 45 nm.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"76 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2013/165945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

We included a designing of low power tunable analog circuits built using independently driven FinFETs devices, where the controlling of the back gate provide the output on the front gate. We show that this could be an effective solution to conveniently tune the output of bulk CMOS analog circuits particularly for Schmitt trigger and operational transconductance amplifier circuits. FinFET devices can be used to increase the performance by reducing the leakage current and power dissipation, because front and back gates both are independently controlled. FinFET device has a higher controllability, resulting relatively high ratio. In this paper, we proposed a tunable analog circuit such as CMOS amplifier circuit, Schmitt trigger circuit, and operational transconductance amplifier circuit, these circuit blocks are necessary for low noise high performance ICs for analog applications. Gain, phase, group delay, and output response of analog tunable circuits have been discussed in this paper. The proposed FinFET based analog tunable circuits have been designed using Cadence Virtuoso tool at 45 nm.
基于FinFET的可调谐模拟电路:设计与技术分析
我们包括使用独立驱动的finfet器件构建的低功率可调谐模拟电路的设计,其中后门的控制提供前门的输出。我们表明,这可能是一种有效的解决方案,方便地调整大块CMOS模拟电路的输出,特别是对于施密特触发和操作跨导放大电路。FinFET器件可以通过减少漏电流和功耗来提高性能,因为前后门都是独立控制的。FinFET器件具有较高的可控性,因而具有较高的比值。在本文中,我们提出了一种可调谐的模拟电路,如CMOS放大电路、施密特触发电路和运算跨导放大电路,这些电路模块是模拟应用中低噪声高性能集成电路所必需的。本文讨论了模拟可调谐电路的增益、相位、群延迟和输出响应。所提出的基于FinFET的模拟可调谐电路已使用Cadence Virtuoso工具在45 nm设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信