{"title":"A Dyadic Simulation Approach to Efficient Range-Summability","authors":"Jingfan Meng, Huayi Wang, Jun Xu, M. Ogihara","doi":"10.4230/LIPIcs.ICDT.2022.17","DOIUrl":null,"url":null,"abstract":"Efficient range-summability (ERS) of a long list of random variables is a fundamental algorithmic problem that has applications to three important database applications, namely, data stream processing, space-efficient histogram maintenance (SEHM), and approximate nearest neighbor searches (ANNS). In this work, we propose a novel dyadic simulation framework and develop three novel ERS solutions, namely Gaussian-dyadic simulation tree (DST), Cauchy-DST and Random Walk-DST, using it. We also propose novel rejection sampling techniques to make these solutions computationally efficient. Furthermore, we develop a novel k-wise independence theory that allows our ERS solutions to have both high computational efficiencies and strong provable independence guarantees.","PeriodicalId":90482,"journal":{"name":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","volume":"41 1","pages":"17:1-17:18"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ICDT.2022.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Efficient range-summability (ERS) of a long list of random variables is a fundamental algorithmic problem that has applications to three important database applications, namely, data stream processing, space-efficient histogram maintenance (SEHM), and approximate nearest neighbor searches (ANNS). In this work, we propose a novel dyadic simulation framework and develop three novel ERS solutions, namely Gaussian-dyadic simulation tree (DST), Cauchy-DST and Random Walk-DST, using it. We also propose novel rejection sampling techniques to make these solutions computationally efficient. Furthermore, we develop a novel k-wise independence theory that allows our ERS solutions to have both high computational efficiencies and strong provable independence guarantees.