{"title":"Influence of diode laser and warm air drying on the shear bond strength of Lithium di-silicate to Dentin. An in-vitro study","authors":"Mohamed Riad, H. Othman, Hussein Mohamed","doi":"10.4322/bds.2022.e2782","DOIUrl":null,"url":null,"abstract":"Objective : The current study aimed to evaluate the effect of diode laser irradiation (980 nm) and warm air drying (50°C) on shear bond strength between Lithium di-silicate (IPS e.max; Ivoclar) and human dentin using both (Etch & Rinse) adhesive, Adper™ Single Bond 2 (3M ESPE) and (Self-etch) adhesive, Single Bond Universal TM (3M ESPE) before adhesive polymerization. Material and Methods : 54 sound lower molars were sectioned to obtain flat dentinal surfaces. Specimens were divided into 2 equal groups (n=27): Group 1 (ER) and Group 2 (SE) according to bonding approach. Each subgroup was subdivided according to dentin surface treatment into 3 equal subgroups (n=9): Control (Co), Diode laser irradiation (L) and Warm air drying (W). All specimens were adhesively cemented to IPS e.max® CAD discs using RelyX™ Ultimate Clicker™(3M ESPE) resin cement. Samples were then subjected to pre-loading in a thermodynamic manner. All samples were tested for shear bond strength using computer-controlled material testing machine. Data analysis was performed using two-way (ANOVA) (p< 0.05) followed by pair-wise Tukey’s post-hoc tests. Results: In (SE) group, the subgroup (W) had the highest shear bond strength values followed by (Co) subgroup and the least was (L) subgroup with statistically significant difference. As for (ER) group, the subgroup (W) had the highest shear bond strength values followed by (Co) subgroup and the least was (L) subgroup with no statistically significant difference. Conclusion: Warm air drying for (SE) bonding approach increased shear bond strength of Lithium di-silicate to human dentin and can be introduced as a new effective protocol.","PeriodicalId":37577,"journal":{"name":"Brazilian Dental Science","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Dental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4322/bds.2022.e2782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 1
Abstract
Objective : The current study aimed to evaluate the effect of diode laser irradiation (980 nm) and warm air drying (50°C) on shear bond strength between Lithium di-silicate (IPS e.max; Ivoclar) and human dentin using both (Etch & Rinse) adhesive, Adper™ Single Bond 2 (3M ESPE) and (Self-etch) adhesive, Single Bond Universal TM (3M ESPE) before adhesive polymerization. Material and Methods : 54 sound lower molars were sectioned to obtain flat dentinal surfaces. Specimens were divided into 2 equal groups (n=27): Group 1 (ER) and Group 2 (SE) according to bonding approach. Each subgroup was subdivided according to dentin surface treatment into 3 equal subgroups (n=9): Control (Co), Diode laser irradiation (L) and Warm air drying (W). All specimens were adhesively cemented to IPS e.max® CAD discs using RelyX™ Ultimate Clicker™(3M ESPE) resin cement. Samples were then subjected to pre-loading in a thermodynamic manner. All samples were tested for shear bond strength using computer-controlled material testing machine. Data analysis was performed using two-way (ANOVA) (p< 0.05) followed by pair-wise Tukey’s post-hoc tests. Results: In (SE) group, the subgroup (W) had the highest shear bond strength values followed by (Co) subgroup and the least was (L) subgroup with statistically significant difference. As for (ER) group, the subgroup (W) had the highest shear bond strength values followed by (Co) subgroup and the least was (L) subgroup with no statistically significant difference. Conclusion: Warm air drying for (SE) bonding approach increased shear bond strength of Lithium di-silicate to human dentin and can be introduced as a new effective protocol.
期刊介绍:
The Journal BRAZILIAN DENTAL SCIENCE is a trimonthly scientific publication of the Institute of Science and Technology of São José dos Campos - UNESP. MISSION - To disseminate and promote the interchange of scientific information amongst the national and international dental community, by means of basic and applied research.