An efficient numerical method for the modified regularized long wave equation using Fourier spectral method

Hany N. Hassan
{"title":"An efficient numerical method for the modified regularized long wave equation using Fourier spectral method","authors":"Hany N. Hassan","doi":"10.1016/j.jaubas.2016.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>The modified regularized long wave (MRLW) equation is numerically solved using Fourier spectral collection method. The MRLW equation is discretized in space variable by the Fourier spectral method and Leap-Frog method for time dependence. To validate the efficiency, accuracy and simplicity of the used method, four cases study are solved. The single soliton wave motion, interaction of two solitary waves, interaction of three solitary waves and a Maxwellian initial condition pulse are studied. The <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> error norms are computed for the motion of single solitary waves. To determine the conservation properties of the MRLW equation three invariants of motion are evaluated for all test problems.</p></div>","PeriodicalId":17232,"journal":{"name":"Journal of the Association of Arab Universities for Basic and Applied Sciences","volume":"24 ","pages":"Pages 198-205"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jaubas.2016.10.002","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Arab Universities for Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1815385216300396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The modified regularized long wave (MRLW) equation is numerically solved using Fourier spectral collection method. The MRLW equation is discretized in space variable by the Fourier spectral method and Leap-Frog method for time dependence. To validate the efficiency, accuracy and simplicity of the used method, four cases study are solved. The single soliton wave motion, interaction of two solitary waves, interaction of three solitary waves and a Maxwellian initial condition pulse are studied. The L2 and L error norms are computed for the motion of single solitary waves. To determine the conservation properties of the MRLW equation three invariants of motion are evaluated for all test problems.

用傅立叶谱法求解修正正则长波方程的有效数值方法
采用傅立叶谱采集法对修正的正则化长波方程进行了数值求解。采用傅里叶谱法和Leap-Frog法对MRLW方程进行空间离散化处理。为了验证该方法的有效性、准确性和简便性,通过四个实例进行了分析。研究了单孤子波的运动、两个孤子波的相互作用、三个孤子波的相互作用和麦克斯韦初始条件脉冲。计算了单孤立波运动的L2和L∞误差范数。为了确定MRLW方程的守恒性质,对所有测试问题计算了三个运动不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信