GAS plume detection in hyperspectral video sequence using low rank representation

Yang Xu, Zenbin Wu, Zhihui Wei, M. Mura, J. Chanussot, A. Bertozzi
{"title":"GAS plume detection in hyperspectral video sequence using low rank representation","authors":"Yang Xu, Zenbin Wu, Zhihui Wei, M. Mura, J. Chanussot, A. Bertozzi","doi":"10.1109/ICIP.2016.7532753","DOIUrl":null,"url":null,"abstract":"Thanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences (HVS) are particularly suited for the detection and tracking of chemical gas plumes. In this paper, we present a novel gas plume detection method. It is based on the decomposition of the sequence into a low-rank and a sparse term, corresponding to the background and the plume, respectively, and incorporating temporal consistency. To introduce spatial continuity, a post processing is added using the Total Variation (TV) regularized model. Experimental results on real hyperspectral video sequences validate the effectiveness of the proposed method.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"70 1","pages":"2221-2225"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Thanks to the fast development of sensors, it is now possible to acquire sequences of hyperspectral images. Those hyperspectral video sequences (HVS) are particularly suited for the detection and tracking of chemical gas plumes. In this paper, we present a novel gas plume detection method. It is based on the decomposition of the sequence into a low-rank and a sparse term, corresponding to the background and the plume, respectively, and incorporating temporal consistency. To introduce spatial continuity, a post processing is added using the Total Variation (TV) regularized model. Experimental results on real hyperspectral video sequences validate the effectiveness of the proposed method.
基于低秩表示的高光谱视频序列气体羽流检测
由于传感器的快速发展,现在有可能获得高光谱图像序列。这些高光谱视频序列(HVS)特别适合于探测和跟踪化学气体羽流。本文提出了一种新的气体羽流检测方法。它是基于将序列分解为低秩项和稀疏项,分别对应于背景和羽流,并结合时间一致性。为了引入空间连续性,采用全变分(TV)正则化模型进行后处理。在真实高光谱视频序列上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信