PLANAR: a programmable accelerator for near-memory data rearrangement

Adrián Barredo, Adrià Armejach, J. Beard, Miquel Moretó
{"title":"PLANAR: a programmable accelerator for near-memory data rearrangement","authors":"Adrián Barredo, Adrià Armejach, J. Beard, Miquel Moretó","doi":"10.1145/3447818.3460368","DOIUrl":null,"url":null,"abstract":"Many applications employ irregular and sparse memory accesses that cannot take advantage of existing cache hierarchies in high performance processors. To solve this problem, Data Layout Transformation (DLT) techniques rearrange sparse data into a dense representation, improving locality and cache utilization. However, prior proposals in this space fail to provide a design that (i) scales with multi-core systems, (ii) hides rearrangement latency, and (iii) provides the necessary interfaces to ease programmability. In this work we present PLANAR, a programmable near-memory accelerator that rearranges sparse data into dense. By placing PLANAR devices at the memory controller level we enable a design that scales well with multi-core systems, hides operation latency by performing non-blocking fine-grain data rearrangements, and eases programmability by supporting virtual memory and conventional memory allocation mechanisms. Our evaluation shows that PLANAR leads to significant reductions in data movement and dynamic energy, providing an average 4.58× speedup.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many applications employ irregular and sparse memory accesses that cannot take advantage of existing cache hierarchies in high performance processors. To solve this problem, Data Layout Transformation (DLT) techniques rearrange sparse data into a dense representation, improving locality and cache utilization. However, prior proposals in this space fail to provide a design that (i) scales with multi-core systems, (ii) hides rearrangement latency, and (iii) provides the necessary interfaces to ease programmability. In this work we present PLANAR, a programmable near-memory accelerator that rearranges sparse data into dense. By placing PLANAR devices at the memory controller level we enable a design that scales well with multi-core systems, hides operation latency by performing non-blocking fine-grain data rearrangements, and eases programmability by supporting virtual memory and conventional memory allocation mechanisms. Our evaluation shows that PLANAR leads to significant reductions in data movement and dynamic energy, providing an average 4.58× speedup.
用于近内存数据重排的可编程加速器
许多应用程序使用不规则和稀疏的内存访问,无法利用高性能处理器中现有的缓存层次结构。为了解决这个问题,数据布局转换(DLT)技术将稀疏数据重新排列成密集的表示,提高了局部性和缓存利用率。然而,在这个领域之前的建议未能提供一种设计(i)可扩展多核系统,(ii)隐藏重排延迟,以及(iii)提供必要的接口来简化可编程性。在这项工作中,我们提出了PLANAR,一个可编程的近内存加速器,它可以将稀疏数据重新排列成密集数据。通过将PLANAR器件置于内存控制器级别,我们使设计能够在多核系统中很好地扩展,通过执行非阻塞细粒度数据重排来隐藏操作延迟,并通过支持虚拟内存和传统内存分配机制来简化可编程性。我们的评估表明,PLANAR显著减少了数据移动和动态能量,提供了平均4.58倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信