Observation of Water Penetration into Cracked and Water Repellent SHCC after Imposed Strain by Means of Neutron Radiography

P. Wang, F. Wittmann, P. Zhang, E. Lehmann, T. Zhao
{"title":"Observation of Water Penetration into Cracked and Water Repellent SHCC after Imposed Strain by Means of Neutron Radiography","authors":"P. Wang, F. Wittmann, P. Zhang, E. Lehmann, T. Zhao","doi":"10.12900/rbm14.20.2-0009","DOIUrl":null,"url":null,"abstract":"Huge strain capacity of SHCC under tensile stress can be reached by multiple crack formation, while the cracks remain bridged by fibers. Under protective conditions the full strain capacity can be used in practice. In this contribution it is shown that even at comparatively modest imposed strain cracks are formed, which may transport water and ions dissolved in water deep into structural elements made of SHCC. One way to reduce water penetration into cracked SHCC has been investigated, the use of an integral water repellent cement-based matrix. It is shown that in this way water penetration is significantly reduced and hence durability is increased.","PeriodicalId":20957,"journal":{"name":"Restoration of Buildings and Monuments","volume":"17 1","pages":"102 - 95"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration of Buildings and Monuments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12900/rbm14.20.2-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Huge strain capacity of SHCC under tensile stress can be reached by multiple crack formation, while the cracks remain bridged by fibers. Under protective conditions the full strain capacity can be used in practice. In this contribution it is shown that even at comparatively modest imposed strain cracks are formed, which may transport water and ions dissolved in water deep into structural elements made of SHCC. One way to reduce water penetration into cracked SHCC has been investigated, the use of an integral water repellent cement-based matrix. It is shown that in this way water penetration is significantly reduced and hence durability is increased.
中子射线照相法观察开裂拒水型SHCC在施加应变后的水渗透
SHCC在拉应力作用下可通过形成多个裂纹而获得巨大的应变能力,而裂纹仍由纤维桥接。在保护条件下,全应变能力可用于实际。在这篇文章中表明,即使在相对适度的施加应变下,裂缝也会形成,这可能会将水和溶解在水中的离子深入到由SHCC制成的结构元件中。研究了一种减少水渗入破裂SHCC的方法,即使用整体防水水泥基基质。结果表明,在这种方式下,水渗透显著减少,因此耐久性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信