Divergence-based odor source declaration

Gonçalo Cabrita, Lino Marques
{"title":"Divergence-based odor source declaration","authors":"Gonçalo Cabrita, Lino Marques","doi":"10.1109/ASCC.2013.6606390","DOIUrl":null,"url":null,"abstract":"This paper explores the use of the divergence operator for odor source declaration in swarm-based algorithms. A set of simulations of a swarm of robots running the decentralized asynchronous particle swarm optimization, bacterial foraging optimization and ant colony optimization algorithms was used to generate multiple wind and odor biased vector fields to investigate the effectiveness of the divergence operator in odor source declaration. A set of real world experiments were also performed using the same swarm algorithms on a controlled environment to ascertain if the divergence operator can also be used on real data. The sparse gas sensor data acquired by the robots was interpolated using the Nadaraya-Watson estimator by means of a wind and odor biased kernel before the application of the divergence. Results show that the divergence operator excels at odor source declaration.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"81 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This paper explores the use of the divergence operator for odor source declaration in swarm-based algorithms. A set of simulations of a swarm of robots running the decentralized asynchronous particle swarm optimization, bacterial foraging optimization and ant colony optimization algorithms was used to generate multiple wind and odor biased vector fields to investigate the effectiveness of the divergence operator in odor source declaration. A set of real world experiments were also performed using the same swarm algorithms on a controlled environment to ascertain if the divergence operator can also be used on real data. The sparse gas sensor data acquired by the robots was interpolated using the Nadaraya-Watson estimator by means of a wind and odor biased kernel before the application of the divergence. Results show that the divergence operator excels at odor source declaration.
基于发散的气味源声明
本文探讨了在基于群算法中使用散度算子进行气味源声明。采用分散异步粒子群优化、细菌觅食优化和蚁群优化算法对机器人群进行仿真,生成多个风和气味偏置向量场,研究发散算子在气味源声明中的有效性。一组真实世界的实验也进行了控制环境下使用相同的群算法,以确定是否散度算子也可以用于实际数据。在应用散度之前,利用Nadaraya-Watson估计器对机器人获取的稀疏气体传感器数据进行了风和气味偏置核插值。结果表明,发散算子具有较好的气味源识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信