A Simulation Study of Semiparametric Estimation in Copula Models Based on Minimum Alpha-Divergence

M. Mohammadi, M. Amini, M. Emadi
{"title":"A Simulation Study of Semiparametric Estimation in Copula Models Based on Minimum Alpha-Divergence","authors":"M. Mohammadi, M. Amini, M. Emadi","doi":"10.19139/soic-2310-5070-974","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"457 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.
基于最小散度的Copula模型半参数估计仿真研究
本文的目的是介绍两种估计耦合参数的半参数方法。这些方法是基于用局部似然概率变换方法得到的非参数的联结密度估计与真联结密度函数之间的最小α散度。基于Hellinger距离和Neyman散度作为alpha -散度的特殊情况,进行蒙特卡罗研究来衡量这些方法的性能。仿真结果与最大伪似然(MPL)估计作为一种传统的估计方法在众所周知的二元联结模型中进行了比较。结果表明,基于最小伪海灵格距离估计的方法在小样本量和弱依赖性情况下具有良好的性能。将参数估计方法应用于实际水文数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信