Statistical Analysis of Novel Ensemble Recursive Radial Basis Function Neural Network Performance on Global Solar Irradiance Forecasting

M. Madhiarasan, M. Louzazni, Brahim Belmahdi
{"title":"Statistical Analysis of Novel Ensemble Recursive Radial Basis Function Neural Network Performance on Global Solar Irradiance Forecasting","authors":"M. Madhiarasan, M. Louzazni, Brahim Belmahdi","doi":"10.1155/2023/2554355","DOIUrl":null,"url":null,"abstract":"Reliable operation of energy management systems, grid stability, and managing energy demand responses are becoming challenging because of the flickering nature of solar irradiance. Accurate forecasting of global solar irradiance, i.e., global horizontal irradiance (GHI), plays a significant role in energy policy-making and the energy market. This paper proposes a novel global solar irradiance forecasting model based on the ensemble recursive radial basis function neural networks (ERRBFNNs). The various atmospheric inputs based on the built ensemble recursive radial basis function neural networks make the network more stable and robust to climatic uncertainty. This paper statistically investigates the performance of novel feed-forward neural networks based on forecasting models with various hidden nodes for global solar irradiance forecasting applications. We validated the proposed ERRBFNN global solar irradiance forecasting model using real-time data sets. The simulation results confirm that the proposed ensemble recursive radial basis function neural network based on global solar irradiance forecasting improves the accuracy, generalization, and network stability. Furthermore, the proposed ERRBFNN lowers the forecasting error to the least compared to other state-of-the-art forecasting models.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"35 1","pages":"2554355:1-2554355:10"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2554355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable operation of energy management systems, grid stability, and managing energy demand responses are becoming challenging because of the flickering nature of solar irradiance. Accurate forecasting of global solar irradiance, i.e., global horizontal irradiance (GHI), plays a significant role in energy policy-making and the energy market. This paper proposes a novel global solar irradiance forecasting model based on the ensemble recursive radial basis function neural networks (ERRBFNNs). The various atmospheric inputs based on the built ensemble recursive radial basis function neural networks make the network more stable and robust to climatic uncertainty. This paper statistically investigates the performance of novel feed-forward neural networks based on forecasting models with various hidden nodes for global solar irradiance forecasting applications. We validated the proposed ERRBFNN global solar irradiance forecasting model using real-time data sets. The simulation results confirm that the proposed ensemble recursive radial basis function neural network based on global solar irradiance forecasting improves the accuracy, generalization, and network stability. Furthermore, the proposed ERRBFNN lowers the forecasting error to the least compared to other state-of-the-art forecasting models.
新型集合递归径向基函数神经网络全球太阳辐照度预报性能的统计分析
由于太阳辐照度的闪烁性,能源管理系统的可靠运行、电网的稳定性和管理能源需求响应变得越来越具有挑战性。准确预报全球太阳辐照度,即全球水平辐照度(GHI),在能源决策和能源市场中起着重要作用。提出了一种基于集合递归径向基函数神经网络(ERRBFNNs)的全球太阳辐照度预测模型。基于所建立的集合递归径向基函数神经网络的各种大气输入,使网络对气候不确定性具有更强的稳定性和鲁棒性。本文统计研究了基于不同隐节点预测模型的新型前馈神经网络在全球太阳辐照度预测中的应用。利用实时数据集对ERRBFNN全球太阳辐照度预测模型进行了验证。仿真结果表明,基于全局太阳辐照度预报的集合递归径向基函数神经网络提高了预报精度、泛化能力和网络稳定性。此外,与其他最先进的预测模型相比,所提出的ERRBFNN将预测误差降低到最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信