Investigation of Temperature‐Activated Charge‐Carrier Dynamics and Dielectric Relaxation in Fe, Cu–Doped CeO2

M. Vishwakarma, P. Jain
{"title":"Investigation of Temperature‐Activated Charge‐Carrier Dynamics and Dielectric Relaxation in Fe, Cu–Doped CeO2","authors":"M. Vishwakarma, P. Jain","doi":"10.1002/pssa.202300349","DOIUrl":null,"url":null,"abstract":"Cerium oxide (CeO2) is a material with unique dielectric properties that make it a promising candidate for various applications. High electrical resistance and a wide bandgap of pristine CeO2 limit its applicability in photovoltaics and photo‐electrocatalysis. CeO2 is co‐doped with transition metals (Fe+2/Fe+3 and Cu+2), which reduces its optical bandgap energy and electrical resistance. This study aims to investigate the dielectric relaxation behavior and charge‐carrier dynamics of Fe, Cu–CeO2. The enhanced charge‐carrier dynamics in the Fe, Cu–doped CeO2 compared to pristine CeO2 are reported. Using temperature‐dependent electrochemical impedance spectroscopy (TD‐EIS), the dielectric relaxation and carrier dynamics in pristine CeO2 and Fe, Cu–doped CeO2 in the temperature range 313–473 K along with the modulus spectroscopy are investigated. It is observed that Z′ values reduced with the temperature, thus showing the negative temperature coefficient of resistance in the frequency range 6.28–1.005  ×  105 radians s−1. Furthermore, a correlated study of –Z″ and M″ shows the charge‐carrier relaxation behavior changes from ideal Debye type to non‐Debye type with temperature rise in Fe, Cu–doped CeO2.","PeriodicalId":87717,"journal":{"name":"Physica status solidi (A): Applied research","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica status solidi (A): Applied research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202300349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cerium oxide (CeO2) is a material with unique dielectric properties that make it a promising candidate for various applications. High electrical resistance and a wide bandgap of pristine CeO2 limit its applicability in photovoltaics and photo‐electrocatalysis. CeO2 is co‐doped with transition metals (Fe+2/Fe+3 and Cu+2), which reduces its optical bandgap energy and electrical resistance. This study aims to investigate the dielectric relaxation behavior and charge‐carrier dynamics of Fe, Cu–CeO2. The enhanced charge‐carrier dynamics in the Fe, Cu–doped CeO2 compared to pristine CeO2 are reported. Using temperature‐dependent electrochemical impedance spectroscopy (TD‐EIS), the dielectric relaxation and carrier dynamics in pristine CeO2 and Fe, Cu–doped CeO2 in the temperature range 313–473 K along with the modulus spectroscopy are investigated. It is observed that Z′ values reduced with the temperature, thus showing the negative temperature coefficient of resistance in the frequency range 6.28–1.005  ×  105 radians s−1. Furthermore, a correlated study of –Z″ and M″ shows the charge‐carrier relaxation behavior changes from ideal Debye type to non‐Debye type with temperature rise in Fe, Cu–doped CeO2.
Fe, cu掺杂CeO2中温度活化电荷载流子动力学和介电弛豫的研究
氧化铈(CeO2)是一种具有独特介电性能的材料,具有广泛的应用前景。原始CeO2的高电阻和宽带隙限制了其在光伏和光电催化中的适用性。CeO2与过渡金属(Fe+2/Fe+3和Cu+2)共掺杂,降低了其光学带隙能量和电阻。本研究旨在研究Fe, Cu-CeO2的介电弛豫行为和载流子动力学。报道了Fe, cu掺杂的CeO2中与原始CeO2相比,电荷载流子动力学的增强。利用温度相关的电化学阻抗谱(TD - EIS)研究了原始CeO2和Fe, cu掺杂CeO2在313-473 K温度范围内的介电弛豫和载流子动力学以及模量谱。观察到,Z值随温度的升高而减小,在6.28 ~ 1.005 × 105弧度s−1的频率范围内,电阻温度系数为负。此外,对-Z″和M″的相关研究表明,在Fe, cu掺杂的CeO2中,随着温度的升高,电荷载流子弛豫行为从理想Debye型转变为非Debye型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信