Dissipative exponentially-fitted methods for the numerical solution of the Schrödinger equation

T.E. Simos , P.S. Williams
{"title":"Dissipative exponentially-fitted methods for the numerical solution of the Schrödinger equation","authors":"T.E. Simos ,&nbsp;P.S. Williams","doi":"10.1016/S0097-8485(00)00100-5","DOIUrl":null,"url":null,"abstract":"<div><p>The first dissipative exponentially fitted method for the numerical integration of the Schrödinger equation is developed in this paper. The technique presented is a nonsymmetric multistep (dissipative) method. An application to the bound-states problem and the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient than the classical dissipative method and other well-known methods. Based on the new method and the method of Raptis and Allison (Comput. Phys. Commun. 14 (1978) 1–5) a new variable-step method is obtained. The application of the new variable-step method to the coupled differential equations arising from the Schrödinger equation indicates the power of the new approach.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"25 3","pages":"Pages 261-273"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(00)00100-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848500001005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The first dissipative exponentially fitted method for the numerical integration of the Schrödinger equation is developed in this paper. The technique presented is a nonsymmetric multistep (dissipative) method. An application to the bound-states problem and the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient than the classical dissipative method and other well-known methods. Based on the new method and the method of Raptis and Allison (Comput. Phys. Commun. 14 (1978) 1–5) a new variable-step method is obtained. The application of the new variable-step method to the coupled differential equations arising from the Schrödinger equation indicates the power of the new approach.

Schrödinger方程数值解的耗散指数拟合方法
本文提出了Schrödinger方程数值积分的第一种耗散指数拟合方法。提出了一种非对称多步(耗散)方法。对径向Schrödinger方程的束缚态问题和共振问题的应用表明,新方法比经典耗散方法和其他已知方法更有效。基于新方法和Raptis和Allison (Comput)的方法。理论物理。common . 14(1978) 1-5)得到了一种新的变步法。将新的变步长方法应用于由Schrödinger方程引起的耦合微分方程,表明了新方法的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信