Rules of the Road: Predicting Driving Behavior With a Convolutional Model of Semantic Interactions

Joey Hong, Benjamin Sapp, James Philbin
{"title":"Rules of the Road: Predicting Driving Behavior With a Convolutional Model of Semantic Interactions","authors":"Joey Hong, Benjamin Sapp, James Philbin","doi":"10.1109/CVPR.2019.00865","DOIUrl":null,"url":null,"abstract":"We focus on the problem of predicting future states of entities in complex, real-world driving scenarios. Previous research has approached this problem via low-level signals to predict short time horizons, and has not addressed how to leverage key assets relied upon heavily by industry self-driving systems: (1) large 3D perception efforts which provide highly accurate 3D states of agents with rich attributes, and (2) detailed and accurate semantic maps of the environment (lanes, traffic lights, crosswalks, etc). We present a unified representation which encodes such high-level semantic information in a spatial grid, allowing the use of deep convolutional models to fuse complex scene context. This enables learning entity-entity and entity-environment interactions with simple, feed-forward computations in each timestep within an overall temporal model of an agent's behavior. We propose different ways of modelling the future as a {\\em distribution} over future states using standard supervised learning. We introduce a novel dataset providing industry-grade rich perception and semantic inputs, and empirically show we can effectively learn fundamentals of driving behavior.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"8446-8454"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"195","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 195

Abstract

We focus on the problem of predicting future states of entities in complex, real-world driving scenarios. Previous research has approached this problem via low-level signals to predict short time horizons, and has not addressed how to leverage key assets relied upon heavily by industry self-driving systems: (1) large 3D perception efforts which provide highly accurate 3D states of agents with rich attributes, and (2) detailed and accurate semantic maps of the environment (lanes, traffic lights, crosswalks, etc). We present a unified representation which encodes such high-level semantic information in a spatial grid, allowing the use of deep convolutional models to fuse complex scene context. This enables learning entity-entity and entity-environment interactions with simple, feed-forward computations in each timestep within an overall temporal model of an agent's behavior. We propose different ways of modelling the future as a {\em distribution} over future states using standard supervised learning. We introduce a novel dataset providing industry-grade rich perception and semantic inputs, and empirically show we can effectively learn fundamentals of driving behavior.
道路规则:用语义交互的卷积模型预测驾驶行为
我们专注于在复杂的现实驾驶场景中预测实体未来状态的问题。之前的研究已经通过低水平信号来预测短时间范围来解决这个问题,并且没有解决如何利用工业自动驾驶系统严重依赖的关键资产:(1)大型3D感知工作,提供具有丰富属性的智能体的高精度3D状态,以及(2)详细而准确的环境语义地图(车道,交通灯,人行横道等)。我们提出了一个统一的表示,在空间网格中编码这些高级语义信息,允许使用深度卷积模型融合复杂的场景上下文。这使得学习实体-实体和实体-环境的相互作用能够在代理行为的整体时间模型内的每个时间步中进行简单的前馈计算。我们提出了使用标准监督学习将未来建模为未来状态的{\em分布}的不同方法。我们引入了一个新的数据集,提供了工业级丰富的感知和语义输入,并通过经验证明我们可以有效地学习驾驶行为的基础知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信