Materials strength and acoustic nonlinearity: case study of CFRP

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Julian Ehrler, A. Solodov, M. Kreutzbruck
{"title":"Materials strength and acoustic nonlinearity: case study of CFRP","authors":"Julian Ehrler, A. Solodov, M. Kreutzbruck","doi":"10.1080/09349847.2021.2017531","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nonlinear acoustic approach is assessed as a nondestructive tool for reconstructing stress-strain curves and quantifying the ultimate tensile strength for various orientations of composite materials. It is shown that a direct use of nonlinear acoustic data requires some adjustments to be applied in the quasi-static tensile conditions. The approach is validated by the calculations using the data for the two in-plane orientations of Carbon Fiber-Reinforced Plastic (CFRP) of totally different strengths. The higher strength arrangement manifests much lower nonlinearity, while the low strength orientation indicates the higher nonlinearity. The quantitative proof-of-concept test is based on the direct measurement of the acoustic nonlinearity for the out-of-plane orientation CFRP. Far higher nonlinearity measured correlates well with the lowest strength for this orientation being a reason of characteristic materials damage in the form of delaminations.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"27 1","pages":"33 - 44"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2021.2017531","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Nonlinear acoustic approach is assessed as a nondestructive tool for reconstructing stress-strain curves and quantifying the ultimate tensile strength for various orientations of composite materials. It is shown that a direct use of nonlinear acoustic data requires some adjustments to be applied in the quasi-static tensile conditions. The approach is validated by the calculations using the data for the two in-plane orientations of Carbon Fiber-Reinforced Plastic (CFRP) of totally different strengths. The higher strength arrangement manifests much lower nonlinearity, while the low strength orientation indicates the higher nonlinearity. The quantitative proof-of-concept test is based on the direct measurement of the acoustic nonlinearity for the out-of-plane orientation CFRP. Far higher nonlinearity measured correlates well with the lowest strength for this orientation being a reason of characteristic materials damage in the form of delaminations.
材料强度与声学非线性:以CFRP为例
非线性声学方法是一种用于复合材料不同取向的应力-应变曲线重建和极限抗拉强度量化的无损工具。结果表明,在准静态拉伸条件下,直接使用非线性声学数据需要进行一些调整。利用不同强度碳纤维增强塑料(CFRP)的两种面内取向数据进行了计算,验证了该方法的有效性。高强度取向的非线性程度较低,而低强度取向的非线性程度较高。定量的概念验证试验是基于对面外取向碳纤维布的声学非线性的直接测量。测量到的高得多的非线性与该取向的最低强度相关,这是分层形式的特征材料损伤的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信