Nano materials are at the frontier of research

Jinwu Kang
{"title":"Nano materials are at the frontier of research","authors":"Jinwu Kang","doi":"10.15406/MSEIJ.2019.03.00079","DOIUrl":null,"url":null,"abstract":"research and review articles were published in volume 2 in 2018. Ghann & Uddin1 investigated the synthesis and characterization of CdSeS/ZnS quantum–dot–gold nanoparticles hybrids (denoted as QD–GNP) , which is a composite structure of semiconductor nanomaterial and metal nanoparticles. Its wavelength of maximum absorption is different from the gold nanoparticles and the quantum dot. And strong photoluminescence quenching was observed in this hybrid. The interaction of this hybrid with terahertz radiation shows the unique terahertz signal of the un conjugated gold nanoparticles and quantum dots versus the conjugated forms. The results indicate that the hybrid gold nanoparticle and quantum dot will have great potential for other optical application. Abraham et al.,2 prepared multiwalled carbon nanotube based styrene butadiene rubber nanocomposites. Imdazolium type ionic liquid was found to facilitate the dispersion of MWCNT in polymer matrix and to act as accelerators for the sulphur vulcanisation of SBR composites and to be helpful for the formation of three dimensional network of MWCNT in rubber matrix. Phul et al.,3 reported a synthesis method of copper nanoparticles by wet chemical reduction using L–ascorbic acid as reducing agent. The as–synthesized nanoparticles have cubic structure with an average particle size of 3 nm, with10times higher surface area as compared to the literature. The fabricated Cu nanoparticles showed noteworthy enhancement in the degradation of Rhodamine B organic dye when used as catalyst for its degradation under both dark and light conditions.","PeriodicalId":18241,"journal":{"name":"Material Science & Engineering International Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science & Engineering International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/MSEIJ.2019.03.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

research and review articles were published in volume 2 in 2018. Ghann & Uddin1 investigated the synthesis and characterization of CdSeS/ZnS quantum–dot–gold nanoparticles hybrids (denoted as QD–GNP) , which is a composite structure of semiconductor nanomaterial and metal nanoparticles. Its wavelength of maximum absorption is different from the gold nanoparticles and the quantum dot. And strong photoluminescence quenching was observed in this hybrid. The interaction of this hybrid with terahertz radiation shows the unique terahertz signal of the un conjugated gold nanoparticles and quantum dots versus the conjugated forms. The results indicate that the hybrid gold nanoparticle and quantum dot will have great potential for other optical application. Abraham et al.,2 prepared multiwalled carbon nanotube based styrene butadiene rubber nanocomposites. Imdazolium type ionic liquid was found to facilitate the dispersion of MWCNT in polymer matrix and to act as accelerators for the sulphur vulcanisation of SBR composites and to be helpful for the formation of three dimensional network of MWCNT in rubber matrix. Phul et al.,3 reported a synthesis method of copper nanoparticles by wet chemical reduction using L–ascorbic acid as reducing agent. The as–synthesized nanoparticles have cubic structure with an average particle size of 3 nm, with10times higher surface area as compared to the literature. The fabricated Cu nanoparticles showed noteworthy enhancement in the degradation of Rhodamine B organic dye when used as catalyst for its degradation under both dark and light conditions.
纳米材料处于研究的前沿
研究和评论文章发表于2018年第2卷。Ghann & Uddin1研究了CdSeS/ZnS量子点-金纳米颗粒杂化物(简称QD-GNP)的合成和表征,这是一种半导体纳米材料和金属纳米颗粒的复合结构。其最大吸收波长与金纳米粒子和量子点不同。该杂种具有较强的光致发光猝灭现象。这种杂化物与太赫兹辐射的相互作用显示了非共轭金纳米粒子和量子点与共轭形式的独特太赫兹信号。结果表明,金纳米粒子与量子点的混合在其他光学领域具有很大的应用潜力。Abraham等人制备了多壁碳纳米管基丁苯橡胶纳米复合材料。研究发现,咪唑型离子液体有利于MWCNT在聚合物基体中的分散,对SBR复合材料的硫化起促进作用,并有助于MWCNT在橡胶基体中的三维网络的形成。Phul等人3报道了一种以l -抗坏血酸为还原剂,湿法化学还原法制备纳米铜的方法。合成的纳米颗粒具有立方结构,平均粒径为3nm,比文献中所述的表面积高10倍。制备的Cu纳米颗粒在光暗两种条件下对罗丹明B有机染料的降解均有明显的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信