Relationship between spectral variables with RapidEye images and dendrometric variables in teak plantations using principal component analysis

Pub Date : 2021-12-01 DOI:10.18671/scifor.v49n132.09
Lucas Henderson de Oliveira Santos, João Paulo Sardo Madi, L. M. G. R. Diaz, Gláucia Miranda Ramirez, É. C. Souza, G. M. Nunes, A. P. D. Corte, M. P. D. L. C. E. Carvalho, C. Silva, S. P. C. Carvalho
{"title":"Relationship between spectral variables with RapidEye images and dendrometric variables in teak plantations using principal component analysis","authors":"Lucas Henderson de Oliveira Santos, João Paulo Sardo Madi, L. M. G. R. Diaz, Gláucia Miranda Ramirez, É. C. Souza, G. M. Nunes, A. P. D. Corte, M. P. D. L. C. E. Carvalho, C. Silva, S. P. C. Carvalho","doi":"10.18671/scifor.v49n132.09","DOIUrl":null,"url":null,"abstract":"Geo-technological information is increasingly used to monitor forest stands through analytical techniques and procedures for large-scale plantations. The objective of this study was to evaluate the relationship between spectral variables (through vegetation index) using images from the RapidEye satellite, dendrometric variables and the uniformity index in teak plantations by applying principal component analysis. The experiment was implemented in 2015, distributed in 12 experimental units, and 50 trees were measured per unit. The field data were obtained from the forest inventory carried out in May 2019, when data on total height (ht) and diameter at 1.30 m height (dbh) of all trees were collected. A strong negative correlation was observed between vegetation indexes and dendrometric variables with uniformity index. The main component analysis indicated the possibility of differentiating uniform from Relationship between spectral variables with RapidEye images and dendrometric variables in teak plantations using principal component analysis Scientia Forestalis, 49(132), e3655, 2021 2/11 non-uniform plantations. Therefore, it is possible to predict uniformity in teak stands through the correlation between dendrometric variables and spectral variables from the RapidEye satellite.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.18671/scifor.v49n132.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Geo-technological information is increasingly used to monitor forest stands through analytical techniques and procedures for large-scale plantations. The objective of this study was to evaluate the relationship between spectral variables (through vegetation index) using images from the RapidEye satellite, dendrometric variables and the uniformity index in teak plantations by applying principal component analysis. The experiment was implemented in 2015, distributed in 12 experimental units, and 50 trees were measured per unit. The field data were obtained from the forest inventory carried out in May 2019, when data on total height (ht) and diameter at 1.30 m height (dbh) of all trees were collected. A strong negative correlation was observed between vegetation indexes and dendrometric variables with uniformity index. The main component analysis indicated the possibility of differentiating uniform from Relationship between spectral variables with RapidEye images and dendrometric variables in teak plantations using principal component analysis Scientia Forestalis, 49(132), e3655, 2021 2/11 non-uniform plantations. Therefore, it is possible to predict uniformity in teak stands through the correlation between dendrometric variables and spectral variables from the RapidEye satellite.
分享
查看原文
基于主成分分析的柚木人工林RapidEye影像光谱变量与树形变量的关系
通过分析技术和大规模人工林的程序,越来越多地利用地质技术信息来监测林分。本研究利用RapidEye卫星影像,利用植被指数对光谱变量、树木学变量和柚木人工林均匀度指数之间的关系进行主成分分析。该试验于2015年实施,分布在12个实验单元,每个实验单元测量50棵树。野外数据来自2019年5月进行的森林清查,当时收集了所有树木的总高度(ht)和1.30 m高度(dbh)的直径数据。植被指数与均匀度指数之间呈显著负相关。主成分分析表明,RapidEye图像光谱变量与树木学变量的主成分分析可以区分柚木人工林的均匀性。林业科学,49(132),e3655,2021 2/11非均匀性。因此,可以通过RapidEye卫星的树形变量和光谱变量之间的相关性来预测柚木林的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信