Metabolism is a major driver of hydrogen isotope fractionation recorded in tree‐ring glucose of Pinus nigra

T. Wieloch, M. Grabner, A. Augusti, H. Serk, I. Ehlers, Jun Yu, J. Schleucher
{"title":"Metabolism is a major driver of hydrogen isotope fractionation recorded in tree‐ring glucose of Pinus nigra","authors":"T. Wieloch, M. Grabner, A. Augusti, H. Serk, I. Ehlers, Jun Yu, J. Schleucher","doi":"10.1101/2021.07.22.453377","DOIUrl":null,"url":null,"abstract":"– Stable isotope abundances convey valuable information about plant physiological processes and underlying environmental controls. Central gaps in our mechanistic understanding of hydrogen isotope abundances impede their widespread application within the plant and biogeosciences. – To address these gaps, we analysed intramolecular deuterium abundances in glucose of Pinus nigra extracted from an annually resolved tree-ring series (1961 to 1995). – We found fractionation signals (i.e., temporal variability in deuterium abundance) at glucose H1 and H2 introduced by closely related metabolic processes. Regression analysis indicates that these signals (and thus metabolism) respond to drought and atmospheric CO2 concentration beyond a response change point. They explain ≈60% of the whole-molecule deuterium variability. Altered metabolism is associated with below-average yet not exceptionally low growth. – We propose the signals are introduced at the leaf-level by changes in sucrose-to-starch carbon partitioning and anaplerotic carbon flux into the Calvin-Benson cycle. In conclusion, metabolism can be the main driver of hydrogen isotope variation in plant glucose.","PeriodicalId":23025,"journal":{"name":"The New phytologist","volume":"13 1","pages":"449 - 461"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New phytologist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.07.22.453377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

– Stable isotope abundances convey valuable information about plant physiological processes and underlying environmental controls. Central gaps in our mechanistic understanding of hydrogen isotope abundances impede their widespread application within the plant and biogeosciences. – To address these gaps, we analysed intramolecular deuterium abundances in glucose of Pinus nigra extracted from an annually resolved tree-ring series (1961 to 1995). – We found fractionation signals (i.e., temporal variability in deuterium abundance) at glucose H1 and H2 introduced by closely related metabolic processes. Regression analysis indicates that these signals (and thus metabolism) respond to drought and atmospheric CO2 concentration beyond a response change point. They explain ≈60% of the whole-molecule deuterium variability. Altered metabolism is associated with below-average yet not exceptionally low growth. – We propose the signals are introduced at the leaf-level by changes in sucrose-to-starch carbon partitioning and anaplerotic carbon flux into the Calvin-Benson cycle. In conclusion, metabolism can be the main driver of hydrogen isotope variation in plant glucose.
代谢是黑松树轮葡萄糖中氢同位素分馏的主要驱动因素
稳定的同位素丰度传递了植物生理过程和潜在环境控制的宝贵信息。我们对氢同位素丰度的机制理解的中心差距阻碍了它们在植物和生物地球科学中的广泛应用。为了解决这些差距,我们分析了从每年解决的树木年轮系列(1961年至1995年)中提取的黑松葡萄糖的分子内氘丰度。-我们在葡萄糖H1和H2中发现了由密切相关的代谢过程引入的分异信号(即氘丰度的时间变化)。回归分析表明,这些信号(以及新陈代谢)对干旱和超过响应变化点的大气CO2浓度有响应。它们解释了约60%的全分子氘变异性。新陈代谢的改变与低于平均水平但不是异常低的生长有关。我们认为这些信号是通过蔗糖到淀粉的碳分配和碳通量的变化引入到叶片水平的卡尔文-本森循环中。综上所述,代谢可能是植物葡萄糖氢同位素变化的主要驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信