Minimal total open monophonic sets in graphs

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
A. Santhakumaran, M. Mahendran, F. Simon Raj, K. Ganesamoorthy
{"title":"Minimal total open monophonic sets in graphs","authors":"A. Santhakumaran, M. Mahendran, F. Simon Raj, K. Ganesamoorthy","doi":"10.1080/23799927.2021.1974568","DOIUrl":null,"url":null,"abstract":"For a connected graph G of order n, a total open monophonic set S of vertices in a graph G is a minimal total open monophonic set if no proper subset of S is a total open monophonic set of G. The upper total open monophonic number of G is the maximum cardinality of a minimal total open monophonic set of G. Certain general properties regarding minimal total open monophonic sets are discussed, and also the upper total open monophonic numbers of certain standard graphs are determined. It is proved that for the Petersen graph G. For integers n and a with , , it is shown that there exists a connected graph G of order n with , and .","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2021.1974568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

For a connected graph G of order n, a total open monophonic set S of vertices in a graph G is a minimal total open monophonic set if no proper subset of S is a total open monophonic set of G. The upper total open monophonic number of G is the maximum cardinality of a minimal total open monophonic set of G. Certain general properties regarding minimal total open monophonic sets are discussed, and also the upper total open monophonic numbers of certain standard graphs are determined. It is proved that for the Petersen graph G. For integers n and a with , , it is shown that there exists a connected graph G of order n with , and .
图中的最小总开单音集
连通图G (n,总共打开单声道的顶点集合S图G是一组最小总打开单声道的如果没有适当的子集S是一个总打开单声道组G上总打开单声道的G的最大基数最小总打开单声道的G .某些关于最小总打开单声道集一般性质进行了讨论,同时某些标准的上打开单声道总数图确定。证明了对于Petersen图G,对于整数n和整数a,证明了存在一个n阶的连通图G,并且。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信