Minimizing Average Regret Ratio in Database

Sepanta Zeighami, R. C. Wong
{"title":"Minimizing Average Regret Ratio in Database","authors":"Sepanta Zeighami, R. C. Wong","doi":"10.1145/2882903.2914831","DOIUrl":null,"url":null,"abstract":"We propose \"average regret ratio\" as a metric to measure users' satisfaction after a user sees k selected points of a database, instead of all of the points in the database. We introduce the average regret ratio as another means of multi-criteria decision making. Unlike the original k-regret operator that uses the maximum regret ratio, the average regret ratio takes into account the satisfaction of a general user. While assuming the existence of some utility functions for the users, in contrast to the top-k query, it does not require a user to input his or her utility function but instead depends on the probability distribution of the utility functions. We prove that the average regret ratio is a supermodular function and provide a polynomial-time approximation algorithm to find the average regret ratio minimizing set for a database.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We propose "average regret ratio" as a metric to measure users' satisfaction after a user sees k selected points of a database, instead of all of the points in the database. We introduce the average regret ratio as another means of multi-criteria decision making. Unlike the original k-regret operator that uses the maximum regret ratio, the average regret ratio takes into account the satisfaction of a general user. While assuming the existence of some utility functions for the users, in contrast to the top-k query, it does not require a user to input his or her utility function but instead depends on the probability distribution of the utility functions. We prove that the average regret ratio is a supermodular function and provide a polynomial-time approximation algorithm to find the average regret ratio minimizing set for a database.
最小化数据库中的平均后悔率
我们提出“平均后悔率”作为衡量用户在看到数据库中的k个选定点而不是数据库中的所有点后的满意度的度量标准。我们引入平均后悔率作为多准则决策的另一种手段。与最初使用最大后悔率的k-后悔算子不同,平均后悔率考虑了一般用户的满意度。假设存在一些用户的效用函数,与top-k查询相反,它不需要用户输入他或她的效用函数,而是依赖于效用函数的概率分布。我们证明了平均后悔率是一个超模函数,并给出了一个求数据库平均后悔率最小集的多项式时间逼近算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信