Effect of Wire Electric Discharge Machining Parameters on Material Removal Rate in Machining of Titanium Grade 7 Alloy

Q3 Engineering
H. R. Basavaraju, R. Suresh, S. Manjunatha
{"title":"Effect of Wire Electric Discharge Machining Parameters on Material Removal Rate in Machining of Titanium Grade 7 Alloy","authors":"H. R. Basavaraju, R. Suresh, S. Manjunatha","doi":"10.4273/ijvss.15.2.18","DOIUrl":null,"url":null,"abstract":"Titanium alloys are widely used in various fields, including the medical field, the automotive and manufacturing sectors. Traditional machining processes are only useful for a limited number of tasks due to the detrimental effects they have on the strength and stiffness of the machined alloys. However, one of the most favoured post-processing equipment used to obtain a high-quality surface is the wire electrical discharge machining (WEDM) technology. The most crucial aspects of WEDM are the rates of the electrical current and voltage, in addition to the pulse-on and pulse-off durations. As a form of wire, WEDM makes use of brass wire that has been zinc-coated. The WEDM method is utilised in the machining of titanium alloy of grade 7 for this project. The surface of titanium grade 7 that had been processed using WEDM was analysed with a scanning electron microscope. The pictures revealed that the material exhibits homogenous solidification and a columnar grain structure along the build direction. As the pulse-on time gets longer, the Material Removal Rate (MRR) also gets higher. When the pulse-on time is set to 60 µs, the greatest MRR that can be achieved is 7.357 mm3/min. As the pulse-off duration gets longer, the MRR is getting lower. At a pulse-off time of 20 µs, the minimal MRR is reached, and it is equivalent to 5.935 mm3/min. At a peak current 6A, the highest MRR is measured is equivalent to 7.795 mm3/min.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.15.2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium alloys are widely used in various fields, including the medical field, the automotive and manufacturing sectors. Traditional machining processes are only useful for a limited number of tasks due to the detrimental effects they have on the strength and stiffness of the machined alloys. However, one of the most favoured post-processing equipment used to obtain a high-quality surface is the wire electrical discharge machining (WEDM) technology. The most crucial aspects of WEDM are the rates of the electrical current and voltage, in addition to the pulse-on and pulse-off durations. As a form of wire, WEDM makes use of brass wire that has been zinc-coated. The WEDM method is utilised in the machining of titanium alloy of grade 7 for this project. The surface of titanium grade 7 that had been processed using WEDM was analysed with a scanning electron microscope. The pictures revealed that the material exhibits homogenous solidification and a columnar grain structure along the build direction. As the pulse-on time gets longer, the Material Removal Rate (MRR) also gets higher. When the pulse-on time is set to 60 µs, the greatest MRR that can be achieved is 7.357 mm3/min. As the pulse-off duration gets longer, the MRR is getting lower. At a pulse-off time of 20 µs, the minimal MRR is reached, and it is equivalent to 5.935 mm3/min. At a peak current 6A, the highest MRR is measured is equivalent to 7.795 mm3/min.
线材放电加工参数对7级钛合金材料去除率的影响
钛合金广泛应用于各个领域,包括医疗领域、汽车和制造业。传统的加工工艺只适用于有限的任务,因为它们对加工合金的强度和刚度有不利的影响。然而,获得高质量表面最受青睐的后处理设备之一是线切割加工(WEDM)技术。电火花切割最关键的方面是电流和电压的速率,以及脉冲开启和脉冲关闭的持续时间。作为线材的一种形式,电火花线切割使用了涂锌的黄铜线材。本项目采用线切割加工方法加工7级钛合金。用扫描电镜对电火花线切割加工后的7级钛表面进行了分析。结果表明,该材料凝固均匀,沿构筑方向呈柱状晶粒结构。随着脉冲开启时间的延长,材料去除率(MRR)也随之提高。当脉冲接通时间设置为60µs时,可实现的最大MRR为7.357 mm3/min。随着脉冲持续时间的延长,MRR越来越低。在脉冲时间为20µs时,达到最小MRR,相当于5.935 mm3/min。在峰值电流6A时,测量到的最高MRR相当于7.795 mm3/min。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Vehicle Structures and Systems
International Journal of Vehicle Structures and Systems Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
78
期刊介绍: The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信