Inferring Bivariate Polynomials for Homomorphic Encryption Application

Diana Maimuţ, G. Teşeleanu
{"title":"Inferring Bivariate Polynomials for Homomorphic Encryption Application","authors":"Diana Maimuţ, G. Teşeleanu","doi":"10.3390/cryptography7020031","DOIUrl":null,"url":null,"abstract":"Inspired by the advancements in (fully) homomorphic encryption in recent decades and its practical applications, we conducted a preliminary study on the underlying mathematical structure of the corresponding schemes. Hence, this paper focuses on investigating the challenge of deducing bivariate polynomials constructed using homomorphic operations, namely repetitive additions and multiplications. To begin with, we introduce an approach for solving the previously mentioned problem using Lagrange interpolation for the evaluation of univariate polynomials. This method is well-established for determining univariate polynomials that satisfy a specific set of points. Moreover, we propose a second approach based on modular knapsack resolution algorithms. These algorithms are designed to address optimization problems in which a set of objects with specific weights and values is involved. Finally, we provide recommendations on how to run our algorithms in order to obtain better results in terms of precision.","PeriodicalId":13158,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"44 1","pages":"844"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the advancements in (fully) homomorphic encryption in recent decades and its practical applications, we conducted a preliminary study on the underlying mathematical structure of the corresponding schemes. Hence, this paper focuses on investigating the challenge of deducing bivariate polynomials constructed using homomorphic operations, namely repetitive additions and multiplications. To begin with, we introduce an approach for solving the previously mentioned problem using Lagrange interpolation for the evaluation of univariate polynomials. This method is well-established for determining univariate polynomials that satisfy a specific set of points. Moreover, we propose a second approach based on modular knapsack resolution algorithms. These algorithms are designed to address optimization problems in which a set of objects with specific weights and values is involved. Finally, we provide recommendations on how to run our algorithms in order to obtain better results in terms of precision.
推断二元多项式在同态加密中的应用
受近几十年来(完全)同态加密及其实际应用进展的启发,我们对相应方案的底层数学结构进行了初步研究。因此,本文重点研究了使用同态运算(即重复加法和乘法)推导二元多项式的挑战。首先,我们介绍了一种利用拉格朗日插值对单变量多项式求值来解决前面提到的问题的方法。这种方法对于确定满足一组特定点的单变量多项式是行之有效的。此外,我们还提出了基于模块化背包解析算法的第二种方法。这些算法被设计用来解决涉及一组具有特定权重和值的对象的优化问题。最后,我们就如何运行我们的算法提供建议,以便在精度方面获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信