Seasonal-To-Interannual Variability of Sea-Surface Temperatures in The Inter-Americas Seas: Pattern-Dependent Biases in The Regional Ocean Modeling System
Ana Lucia Caicedo Laurido, Ángel G. Muñoz Solórsano, X. Chourio, Cristian Andrés Tobar Mosquera, Sadid Latandret
{"title":"Seasonal-To-Interannual Variability of Sea-Surface Temperatures in The Inter-Americas Seas: Pattern-Dependent Biases in The Regional Ocean Modeling System","authors":"Ana Lucia Caicedo Laurido, Ángel G. Muñoz Solórsano, X. Chourio, Cristian Andrés Tobar Mosquera, Sadid Latandret","doi":"10.18272/aci.v13i2.2046","DOIUrl":null,"url":null,"abstract":"The Inter-Americas Seas (IAS), involving the Gulf of Mexico, the Caribbean and a section of the eastern tropical Pacific Ocean bordering Central America, Colombia and Ecuador, exhibits very active ocean-land-atmosphere interactions that impact socio-economic activities within and beyond the region, and that are still not well understood or represented in state-of-the-art models. On seasonal-to-interannual timescales, the main source of variability of this geographical area is related to interactions between the Pacific and the Atlantic oceans, involving to anomalous sea-surface temperature (SST) patterns like El Niño-Southern Oscillation (ENSO), and regional features in the Caribbean linked to the bi-modal seasonality of the Caribbean Low-Level Jet. This study investigates seasonal-to-interannual IAS surface-temperature anomalies in observations, and their representation in am eddy-permitting, 1/9o-resolution simulation using the Regional Ocean Modeling System (ROMS), interannually-forced by the Climate Forecast System Reanalysis. Here, rather than analyzing model biases locally (i.e., gridbox-by-gridbox), a non-local SST pattern-based diagnostic was conducted via a principal component analysis. The approach allowed to identify magnitude, variance and spatial systematic errors in SST patterns related to the Western Hemisphere Warm Pool, ENSO, the Inter-American Seas Dipole, and several other variability modes. These biases are mainly related to errors in surface heat fluxes, misrepresentation of air-sea interactions impacting surface latent cooling in the Caribbean, and too strong sub-surface thermal stratification, mostly off the coast of Ecuador and northern Peru.","PeriodicalId":42541,"journal":{"name":"Avances en Ciencias e Ingenieria","volume":"11 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avances en Ciencias e Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18272/aci.v13i2.2046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Inter-Americas Seas (IAS), involving the Gulf of Mexico, the Caribbean and a section of the eastern tropical Pacific Ocean bordering Central America, Colombia and Ecuador, exhibits very active ocean-land-atmosphere interactions that impact socio-economic activities within and beyond the region, and that are still not well understood or represented in state-of-the-art models. On seasonal-to-interannual timescales, the main source of variability of this geographical area is related to interactions between the Pacific and the Atlantic oceans, involving to anomalous sea-surface temperature (SST) patterns like El Niño-Southern Oscillation (ENSO), and regional features in the Caribbean linked to the bi-modal seasonality of the Caribbean Low-Level Jet. This study investigates seasonal-to-interannual IAS surface-temperature anomalies in observations, and their representation in am eddy-permitting, 1/9o-resolution simulation using the Regional Ocean Modeling System (ROMS), interannually-forced by the Climate Forecast System Reanalysis. Here, rather than analyzing model biases locally (i.e., gridbox-by-gridbox), a non-local SST pattern-based diagnostic was conducted via a principal component analysis. The approach allowed to identify magnitude, variance and spatial systematic errors in SST patterns related to the Western Hemisphere Warm Pool, ENSO, the Inter-American Seas Dipole, and several other variability modes. These biases are mainly related to errors in surface heat fluxes, misrepresentation of air-sea interactions impacting surface latent cooling in the Caribbean, and too strong sub-surface thermal stratification, mostly off the coast of Ecuador and northern Peru.