Zhixing Tan , Shuo Wang , Zonghan Yang , Gang Chen , Xuancheng Huang , Maosong Sun , Yang Liu
{"title":"Neural machine translation: A review of methods, resources, and tools","authors":"Zhixing Tan , Shuo Wang , Zonghan Yang , Gang Chen , Xuancheng Huang , Maosong Sun , Yang Liu","doi":"10.1016/j.aiopen.2020.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for researchers. Finally, we conclude with a discussion of possible future research directions.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"1 ","pages":"Pages 5-21"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiopen.2020.11.001","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651020300024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60
Abstract
Machine translation (MT) is an important sub-field of natural language processing that aims to translate natural languages using computers. In recent years, end-to-end neural machine translation (NMT) has achieved great success and has become the new mainstream method in practical MT systems. In this article, we first provide a broad review of the methods for NMT and focus on methods relating to architectures, decoding, and data augmentation. Then we summarize the resources and tools that are useful for researchers. Finally, we conclude with a discussion of possible future research directions.