A COMPARISON OF NONPARAMETRIC ESTIMATORS FOR LENGTH DISTRIBUTION IN LINE SEGMENT PROCESSES

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Z. Pawlas, M. Zikmundová
{"title":"A COMPARISON OF NONPARAMETRIC ESTIMATORS FOR LENGTH DISTRIBUTION IN LINE SEGMENT PROCESSES","authors":"Z. Pawlas, M. Zikmundová","doi":"10.5566/IAS.1889","DOIUrl":null,"url":null,"abstract":"We study nonparametric estimation of the length distribution for stationary line segment processes in the d-dimensional Euclidean space. Several methods have been proposed in the literature. We review different approaches (Horvitz-Thompson type estimator, reduced-sample estimator, Kaplan-Meier estimator, nonparametric maximum likelihood estimator, stochastic restoration estimation) and compare the finite sample behaviour by means of a simulation study for stationary line segment processes in 2D and 3D. Several data generating processes (Poisson point process, Matérn cluster process and Matérn hard-core process II) are considered with both independent and dependent segments. Our finite sample comparison reveals that the nonparametric likelihood estimator provides the most preferable method which works reasonably also if its assumptions are not satisfied. ","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"37 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1889","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

We study nonparametric estimation of the length distribution for stationary line segment processes in the d-dimensional Euclidean space. Several methods have been proposed in the literature. We review different approaches (Horvitz-Thompson type estimator, reduced-sample estimator, Kaplan-Meier estimator, nonparametric maximum likelihood estimator, stochastic restoration estimation) and compare the finite sample behaviour by means of a simulation study for stationary line segment processes in 2D and 3D. Several data generating processes (Poisson point process, Matérn cluster process and Matérn hard-core process II) are considered with both independent and dependent segments. Our finite sample comparison reveals that the nonparametric likelihood estimator provides the most preferable method which works reasonably also if its assumptions are not satisfied. 
线段过程中长度分布的非参数估计的比较
研究了d维欧几里德空间中平稳线段过程长度分布的非参数估计。文献中提出了几种方法。我们回顾了不同的方法(Horvitz-Thompson型估计、减少样本估计、Kaplan-Meier估计、非参数最大似然估计、随机恢复估计),并通过对二维和三维固定线段过程的模拟研究比较了有限样本行为。考虑了几个数据生成过程(泊松点过程、matsamn聚类过程和matsamn硬核过程II)的独立段和依赖段。有限样本比较表明,非参数似然估计是最理想的方法,在假设不满足的情况下也能合理地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信