SEDIMENTATION RESISTANCE OF ELECTROLYTE-SUSPENSION AND MICROHARDNESS OF NANOCOMPOSITE GALVANIC COATINGS BASED ON CHROMIUM

V. Safonov, S. Shishurin, P. Gorbushin, V. V. Ostrikov
{"title":"SEDIMENTATION RESISTANCE OF ELECTROLYTE-SUSPENSION AND MICROHARDNESS OF NANOCOMPOSITE GALVANIC COATINGS BASED ON CHROMIUM","authors":"V. Safonov, S. Shishurin, P. Gorbushin, V. V. Ostrikov","doi":"10.35679/1991-9476-2021-16-1-65-76","DOIUrl":null,"url":null,"abstract":"By adding nanosized materials to electrolytes, coatings with improved physical and mechanical properties can be obtained. Galvanic coatings are used to solve the problems of machine-building and repair production, both in the automotive industry and in construction, aviation, radio and electronic industries. The most interesting were potassium polytitanates. To obtain chromium-based nanocomposite electroplating coatings, the following group of nanosized particles was selected for research: Al2O3, AlN, SiC, TiC, WC, K2OnTiO2. The article considers methods of increasing sedimentation resistance of electrolytes for application of nanocomposite electroplating coatings based on chromium. To obtain chromium-based nanocomposite electroplating coatings, a self-regulating chromium electrolyte was selected. The method of plasma re-condensation is selected, allowing to obtain various nanodisperse materials with particle size from 10 to 100 nm. Studies have shown that electrolyte suspension obtained by ultrasonic generator treatment with frequency of 22 kHz for 10-12 min is most resistant. Coating application should be carried out under constant action of ultrasonic oscillations of ultrasonic bath with frequency of 18 kHz. The microhardness of the coatings obtained by this method, using nano-sized particles Al2O3, reaches 14.1 GPa, which is 1.03... 1.21 times the microhardness of the coatings obtained with other particles and 1.47 times the microhardness of the coatings without adding nano-sized particles.","PeriodicalId":14015,"journal":{"name":"International Journal of Life-Sciences Scientific Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Life-Sciences Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35679/1991-9476-2021-16-1-65-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By adding nanosized materials to electrolytes, coatings with improved physical and mechanical properties can be obtained. Galvanic coatings are used to solve the problems of machine-building and repair production, both in the automotive industry and in construction, aviation, radio and electronic industries. The most interesting were potassium polytitanates. To obtain chromium-based nanocomposite electroplating coatings, the following group of nanosized particles was selected for research: Al2O3, AlN, SiC, TiC, WC, K2OnTiO2. The article considers methods of increasing sedimentation resistance of electrolytes for application of nanocomposite electroplating coatings based on chromium. To obtain chromium-based nanocomposite electroplating coatings, a self-regulating chromium electrolyte was selected. The method of plasma re-condensation is selected, allowing to obtain various nanodisperse materials with particle size from 10 to 100 nm. Studies have shown that electrolyte suspension obtained by ultrasonic generator treatment with frequency of 22 kHz for 10-12 min is most resistant. Coating application should be carried out under constant action of ultrasonic oscillations of ultrasonic bath with frequency of 18 kHz. The microhardness of the coatings obtained by this method, using nano-sized particles Al2O3, reaches 14.1 GPa, which is 1.03... 1.21 times the microhardness of the coatings obtained with other particles and 1.47 times the microhardness of the coatings without adding nano-sized particles.
铬基纳米复合电镀层的电解质悬浮液抗沉降性能和显微硬度
通过在电解质中加入纳米材料,可以获得物理和机械性能得到改善的涂层。原电涂层用于解决汽车工业、建筑、航空、无线电和电子工业中的机械制造和维修生产问题。最有趣的是聚钛酸钾。为了获得铬基纳米复合镀层,选择了Al2O3、AlN、SiC、TiC、WC、K2OnTiO2等纳米颗粒进行研究。本文研究了在铬基纳米复合电镀镀层中提高电解液抗沉降性能的方法。为了获得铬基纳米复合镀层,选择了一种自调节的铬电解液。选择等离子体再凝聚的方法,可以得到粒径在10 ~ 100nm之间的各种纳米分散材料。研究表明,频率为22 kHz的超声波发生器处理10-12 min得到的电解质悬浮液耐腐蚀性能最好。涂布应在频率为18khz的超声浴超声振荡的持续作用下进行。采用该方法制备的纳米级Al2O3涂层的显微硬度达到14.1 GPa,为1.03…添加其他颗粒得到的涂层的显微硬度为1.21倍,未添加纳米颗粒得到的涂层的显微硬度为1.47倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信