A review on the selection criteria for the truncated SVD in Data Science applications

Antonella Falini
{"title":"A review on the selection criteria for the truncated SVD in Data Science applications","authors":"Antonella Falini","doi":"10.1016/j.jcmds.2022.100064","DOIUrl":null,"url":null,"abstract":"<div><p>The Singular Value Decomposition (SVD) is one of the most used factorizations when it comes to Data Science applications. In particular, given the big size of the processed matrices, in most of the cases, a truncated SVD algorithm is employed. In the following manuscript, we review some of the state-of-the-art approaches considered for the selection of the number of components (i.e., singular values) to retain to apply the truncated SVD. Moreover, three new approaches based on the Kullback–Leibler divergence and on unsupervised anomaly detection algorithms, are introduced. The revised methods are then compared on some standard benchmarks in the image processing context.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000244/pdfft?md5=c82db1b06d3855b71bbc4c4f00794338&pid=1-s2.0-S2772415822000244-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Singular Value Decomposition (SVD) is one of the most used factorizations when it comes to Data Science applications. In particular, given the big size of the processed matrices, in most of the cases, a truncated SVD algorithm is employed. In the following manuscript, we review some of the state-of-the-art approaches considered for the selection of the number of components (i.e., singular values) to retain to apply the truncated SVD. Moreover, three new approaches based on the Kullback–Leibler divergence and on unsupervised anomaly detection algorithms, are introduced. The revised methods are then compared on some standard benchmarks in the image processing context.

数据科学应用中截断奇异值分解的选择标准综述
当涉及到数据科学应用程序时,奇异值分解(SVD)是最常用的分解之一。特别是,考虑到处理的矩阵的大尺寸,在大多数情况下,使用截断的SVD算法。在下面的手稿中,我们回顾了一些最先进的方法,用于选择保留的组件(即奇异值)的数量,以应用截断的奇异值分解。此外,还介绍了基于Kullback-Leibler散度和无监督异常检测算法的三种新方法。然后在图像处理环境中的一些标准基准上对修订后的方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信