People Counting Solution Using an FMCW Radar with Knowledge Distillation From Camera Data

Michael Stephan, Souvik Hazra, Avik Santra, R. Weigel, Georg Fischer
{"title":"People Counting Solution Using an FMCW Radar with Knowledge Distillation From Camera Data","authors":"Michael Stephan, Souvik Hazra, Avik Santra, R. Weigel, Georg Fischer","doi":"10.1109/SENSORS47087.2021.9639798","DOIUrl":null,"url":null,"abstract":"Radar systems enable remote sensing of multiple persons within their field of view. In this paper, we propose a novel architecture to perform people counting using a 60 GHz Frequency Modulated Continuous Wave radar trained on supervised radar data and knowledge distillation performed using synchronized camera data. In the evaluation phase, only the radar encoder with Range - Doppler Images (RDI) as input is used and tested on a dataset consisting of scenarios recorded in a different setup than the training recordings with up to 6 persons present. In this paper we focus on showing the benefit of using the cross-modal camera information compared to the same unimodal model. In spite of the low-cost radar sensor, the proposed architecture achieves an accuracy of 71% compared to 58% for the test data from a different sensor with a different orientation and aspect angle, and an accuracy of 89% compared to 74% for test data from the same radar sensor when training without knowledge distillation.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"183 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Radar systems enable remote sensing of multiple persons within their field of view. In this paper, we propose a novel architecture to perform people counting using a 60 GHz Frequency Modulated Continuous Wave radar trained on supervised radar data and knowledge distillation performed using synchronized camera data. In the evaluation phase, only the radar encoder with Range - Doppler Images (RDI) as input is used and tested on a dataset consisting of scenarios recorded in a different setup than the training recordings with up to 6 persons present. In this paper we focus on showing the benefit of using the cross-modal camera information compared to the same unimodal model. In spite of the low-cost radar sensor, the proposed architecture achieves an accuracy of 71% compared to 58% for the test data from a different sensor with a different orientation and aspect angle, and an accuracy of 89% compared to 74% for test data from the same radar sensor when training without knowledge distillation.
基于相机数据知识精馏的FMCW雷达人员计数解决方案
雷达系统可以在其视野范围内对多人进行遥感。在本文中,我们提出了一种新的架构,使用60 GHz调频连续波雷达进行人员计数,该雷达使用监督雷达数据进行训练,并使用同步相机数据进行知识蒸馏。在评估阶段,仅使用距离多普勒图像(RDI)作为输入的雷达编码器,并在一个数据集上进行测试,该数据集由与训练记录不同的设置中记录的场景组成,最多有6人在场。在本文中,我们重点展示了与使用相同的单峰模型相比,使用跨模态相机信息的好处。尽管采用了低成本的雷达传感器,但所提出的体系结构对于来自不同方向和角度的不同传感器的测试数据的准确率达到了71%,而对于来自相同雷达传感器的测试数据,在不进行知识蒸馏训练的情况下,准确率为89%,而对于来自相同雷达传感器的测试数据,准确率为74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信