A framework for modeling fault propagation paths in air turbine starter based on Bayesian network

IF 1.7 4区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Runxia Guo, Zihang Wang
{"title":"A framework for modeling fault propagation paths in air turbine starter based on Bayesian network","authors":"Runxia Guo, Zihang Wang","doi":"10.1177/1748006X211052732","DOIUrl":null,"url":null,"abstract":"Any minor fault may spread, accumulate and enlarge through the causal link of fault in a closed-loop complex system of civil aircraft, and eventually result in unplanned downtime. In this paper, the fault propagation path model (FPPM) is proposed for system-level decomposition and simplifying the process of fault propagation analysis by combining the improved ant colony optimization algorithm (I-ACO) with the Bayesian network (BN). In FPPM, the modeling of the fault propagation path consists of three models, namely shrinking model (SM), ant colony optimization model (ACOM), and assessment model (AM). Firstly, the state space is shrunk by the most weight supported tree algorithm (MWST) at the initial establishment stage of BN. Next, I-ACO is designed to improve the structure of BN in order to study the fault propagation path accurately. Finally, the experiment is conducted from two different perspectives for the rationality of the well-trained BN’s structure. An example of practical application for the propagation path model of typical faults on the A320 air turbine starter is given to verify the validity and feasibility of the proposed method.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006X211052732","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

Abstract

Any minor fault may spread, accumulate and enlarge through the causal link of fault in a closed-loop complex system of civil aircraft, and eventually result in unplanned downtime. In this paper, the fault propagation path model (FPPM) is proposed for system-level decomposition and simplifying the process of fault propagation analysis by combining the improved ant colony optimization algorithm (I-ACO) with the Bayesian network (BN). In FPPM, the modeling of the fault propagation path consists of three models, namely shrinking model (SM), ant colony optimization model (ACOM), and assessment model (AM). Firstly, the state space is shrunk by the most weight supported tree algorithm (MWST) at the initial establishment stage of BN. Next, I-ACO is designed to improve the structure of BN in order to study the fault propagation path accurately. Finally, the experiment is conducted from two different perspectives for the rationality of the well-trained BN’s structure. An example of practical application for the propagation path model of typical faults on the A320 air turbine starter is given to verify the validity and feasibility of the proposed method.
基于贝叶斯网络的空气涡轮起动器故障传播路径建模框架
在民用飞机闭环复杂系统中,任何一个小故障都可能通过故障的因果联系传播、积累和扩大,最终导致计划外停机。本文将改进的蚁群优化算法(I-ACO)与贝叶斯网络(BN)相结合,提出了故障传播路径模型(FPPM)进行系统级分解,简化了故障传播分析过程。在FPPM中,故障传播路径的建模包括三种模型,即收缩模型(SM)、蚁群优化模型(ACOM)和评估模型(AM)。首先,在初始BN建立阶段,采用最权支持树算法(MWST)对状态空间进行收缩;其次,设计I-ACO改进BN的结构,以便准确地研究故障传播路径。最后,从两个不同的角度对训练良好的BN结构的合理性进行实验。以A320空气涡轮起动器典型故障传播路径模型为例,验证了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
19.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信