Microstructure and strength of joints of nickel sheets produced by ultrasonic welding

E. R. Shayakhmetova, M. Murzinova, A. Nazarov
{"title":"Microstructure and strength of joints of nickel sheets produced by ultrasonic welding","authors":"E. R. Shayakhmetova, M. Murzinova, A. Nazarov","doi":"10.18323/2073-5073-2021-2-75-81","DOIUrl":null,"url":null,"abstract":"Ultrasonic welding (USW) is one of the methods for producing solid-phase joints of thin metal sheets, which in the future can be used to obtain laminated composite materials, for additive manufacturing and renovation of metallic articles. The quality of joints depends on both the processing conditions and the properties of welded metals and alloys. At present, the USW conditions, the properties, and structure of weld joints of strong metals, in particular, of nickel, are underexplored. In this work, the authors studied the influence of the compressive load magnitude on the lap shear strength and the structure of joints of annealed nickel sheets with a thickness of 0.5 mm produced by spot USW. The authors carried out USW at a vibration frequency of 20 kHz with an amplitude of 15 μm, the time of welding was equal to 2 s. The compressive load magnitude was varied from 3.5 to 7 kN. The study showed that with an increase in the compressive load in the considered range of values, the strength of weld joints increased, reached a maximum, and then decreased. The joints obtained at the compressive load of 6 kN demonstrated the highest lap shear strength of 1950 N. A zone of thermomechanical influence with a gradient microstructure is observed near the contact of the welded surfaces. In a layer with a thickness of 10–20 mm, the initial coarse-grained structure of nickel is transformed into an ultra-fine-grained one with a grain size of less than 1 mm. The ultra-fine-grained layer neighbors on crystallites, the size of which is several micrometers and increases with a distance from the contact surface of welded sheets. The authors compared the results of mechanical lap shear tests and structural studies with the data obtained after ultrasonic welding of nickel, aluminum, and copper alloys.","PeriodicalId":23555,"journal":{"name":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2073-5073-2021-2-75-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic welding (USW) is one of the methods for producing solid-phase joints of thin metal sheets, which in the future can be used to obtain laminated composite materials, for additive manufacturing and renovation of metallic articles. The quality of joints depends on both the processing conditions and the properties of welded metals and alloys. At present, the USW conditions, the properties, and structure of weld joints of strong metals, in particular, of nickel, are underexplored. In this work, the authors studied the influence of the compressive load magnitude on the lap shear strength and the structure of joints of annealed nickel sheets with a thickness of 0.5 mm produced by spot USW. The authors carried out USW at a vibration frequency of 20 kHz with an amplitude of 15 μm, the time of welding was equal to 2 s. The compressive load magnitude was varied from 3.5 to 7 kN. The study showed that with an increase in the compressive load in the considered range of values, the strength of weld joints increased, reached a maximum, and then decreased. The joints obtained at the compressive load of 6 kN demonstrated the highest lap shear strength of 1950 N. A zone of thermomechanical influence with a gradient microstructure is observed near the contact of the welded surfaces. In a layer with a thickness of 10–20 mm, the initial coarse-grained structure of nickel is transformed into an ultra-fine-grained one with a grain size of less than 1 mm. The ultra-fine-grained layer neighbors on crystallites, the size of which is several micrometers and increases with a distance from the contact surface of welded sheets. The authors compared the results of mechanical lap shear tests and structural studies with the data obtained after ultrasonic welding of nickel, aluminum, and copper alloys.
超声波焊接镍片接头的显微组织和强度
超声焊接(USW)是制造金属薄板固相连接的方法之一,未来可用于制备层合复合材料,用于增材制造和金属制品的翻新。接头的质量既取决于加工条件,也取决于焊接金属和合金的性能。目前,对强金属,特别是镍的USW条件、焊接接头的性能和结构的研究还不够充分。本文研究了压缩载荷量级对点焊法0.5 mm退火镍片搭接抗剪强度和接头结构的影响。在振动频率为20 kHz、振幅为15 μm的条件下,焊接时间为2 s。压缩载荷大小为3.5 ~ 7 kN。研究表明,在考虑值范围内,随着压缩载荷的增大,焊缝强度先增大,达到最大值后减小。当压缩载荷为6 kN时,接头的搭接抗剪强度最高,为1950 n。在焊接表面接触处,观察到具有梯度组织的热力学影响区。在厚度为10-20 mm的层中,镍的初始粗晶组织转变为晶粒尺寸小于1 mm的超细晶组织。超细晶粒层与晶粒相邻,晶粒尺寸为几微米,并随着距离焊片接触面的距离而增大。作者将机械搭接剪切试验和结构研究的结果与镍、铝和铜合金超声焊接后获得的数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信