{"title":"JUST: JD Urban Spatio-Temporal Data Engine","authors":"Ruiyuan Li, Huajun He, Rubin Wang, Yuchuan Huang, Junwen Liu, Sijie Ruan, Tianfu He, Jie Bao, Yu Zheng","doi":"10.1109/ICDE48307.2020.00138","DOIUrl":null,"url":null,"abstract":"With the prevalence of positioning techniques, a prodigious number of spatio-temporal data is generated con-stantly. To effectively support sophisticated urban applications, e.g., location-based services, based on spatio-temporal data, it is desirable for an efficient, scalable, update-enabled, and easy-to-use spatio-temporal data management system.This paper presents JUST, i.e., JD Urban Spatio-Temporal data engine, which can efficiently manage big spatio-temporal data in a convenient way. JUST incorporates the distributed NoSQL data store, i.e., Apache HBase, as the underlying storage, GeoMesa as the spatio-temporal data indexing tool, and Apache Spark as the execution engine. We creatively design two indexing techniques, i.e., Z2T and XZ2T, which accelerates spatio-temporal queries tremendously. Furthermore, we introduce a compression mechanism, which not only greatly reduces the storage cost, but also improves the query efficiency. To make JUST easy-to-use, we design and implement a complete SQL engine, with which all operations can be performed through a SQL-like query language, i.e., JustQL. JUST also supports inherently new data insertions and historical data updates without index reconstruction. JUST is deployed as a PaaS in JD with multi-users support. Many applications have been developed based on the SDKs provided by JUST. Extensive experiments are carried out with six state-of-the-art distributed spatio-temporal data management systems based on two real datasets and one synthetic dataset. The results show that JUST has a competitive query performance and is much more scalable than them.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"53 1","pages":"1558-1569"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
With the prevalence of positioning techniques, a prodigious number of spatio-temporal data is generated con-stantly. To effectively support sophisticated urban applications, e.g., location-based services, based on spatio-temporal data, it is desirable for an efficient, scalable, update-enabled, and easy-to-use spatio-temporal data management system.This paper presents JUST, i.e., JD Urban Spatio-Temporal data engine, which can efficiently manage big spatio-temporal data in a convenient way. JUST incorporates the distributed NoSQL data store, i.e., Apache HBase, as the underlying storage, GeoMesa as the spatio-temporal data indexing tool, and Apache Spark as the execution engine. We creatively design two indexing techniques, i.e., Z2T and XZ2T, which accelerates spatio-temporal queries tremendously. Furthermore, we introduce a compression mechanism, which not only greatly reduces the storage cost, but also improves the query efficiency. To make JUST easy-to-use, we design and implement a complete SQL engine, with which all operations can be performed through a SQL-like query language, i.e., JustQL. JUST also supports inherently new data insertions and historical data updates without index reconstruction. JUST is deployed as a PaaS in JD with multi-users support. Many applications have been developed based on the SDKs provided by JUST. Extensive experiments are carried out with six state-of-the-art distributed spatio-temporal data management systems based on two real datasets and one synthetic dataset. The results show that JUST has a competitive query performance and is much more scalable than them.