Areas spanned by point configurations in the plane

Alex McDonald
{"title":"Areas spanned by point configurations in the plane","authors":"Alex McDonald","doi":"10.1090/proc/15348","DOIUrl":null,"url":null,"abstract":"We consider an over-determined Falconer type problem on $(k+1)$-point configurations in the plane using the group action framework introduced in \\cite{GroupAction}. We define the area type of a $(k+1)$-point configuration in the plane to be the vector in $\\R^{\\binom{k+1}{2}}$ with entries given by the areas of parallelograms spanned by each pair of points in the configuration. We show that the space of all area types is $2k-1$ dimensional, and prove that a compact set $E\\subset\\R^d$ of sufficiently large Hausdorff dimension determines a positve measure set of area types.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider an over-determined Falconer type problem on $(k+1)$-point configurations in the plane using the group action framework introduced in \cite{GroupAction}. We define the area type of a $(k+1)$-point configuration in the plane to be the vector in $\R^{\binom{k+1}{2}}$ with entries given by the areas of parallelograms spanned by each pair of points in the configuration. We show that the space of all area types is $2k-1$ dimensional, and prove that a compact set $E\subset\R^d$ of sufficiently large Hausdorff dimension determines a positve measure set of area types.
由平面上的点构成所张成的面积
我们使用\cite{GroupAction}中引入的群作用框架考虑平面上$(k+1)$点构型上的超确定Falconer型问题。我们定义平面中$(k+1)$点构型的面积类型为$\R^{\binom{k+1}{2}}$中的向量,其分量由构型中每对点张成的平行四边形的面积给出。我们证明了所有面积类型的空间是$2k-1$维的,并证明了一个足够大的Hausdorff维数的紧集$E\subset\R^d$决定了一个面积类型的正测度集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信