Analysis of advanced meter infrastructure data of water consumption in apartment buildings

Einat Kermany, Hanna Mazzawi, Dorit Baras, Y. Naveh, Hagai Michaelis
{"title":"Analysis of advanced meter infrastructure data of water consumption in apartment buildings","authors":"Einat Kermany, Hanna Mazzawi, Dorit Baras, Y. Naveh, Hagai Michaelis","doi":"10.1145/2487575.2488193","DOIUrl":null,"url":null,"abstract":"We present our experience of using machine learning techniques over data originating from advanced meter infrastructure (AMI) systems for water consumption in a medium-size city. We focus on two new use cases that are of special importance to city authorities. One use case is the automatic identification of malfunctioning meters, with a focus on distinguishing them from legitimate non-consumption such as during periods when the household residents are on vacation. The other use case is the identification of leaks or theft in the unmetered common areas of apartment buildings. These two use cases are highly important to city authorities both because of the lost revenue they imply and because of the hassle to the residents in cases of delayed identification. Both cases are inherently complex to analyze and require advanced data mining techniques in order to achieve high levels of correct identification. Our results provide for faster and more accurate detection of malfunctioning meters as well as leaks in the common areas. This results in significant tangible value to the authorities in terms of increase in technician efficiency and a decrease in the amount of wasted, non-revenue, water.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2488193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We present our experience of using machine learning techniques over data originating from advanced meter infrastructure (AMI) systems for water consumption in a medium-size city. We focus on two new use cases that are of special importance to city authorities. One use case is the automatic identification of malfunctioning meters, with a focus on distinguishing them from legitimate non-consumption such as during periods when the household residents are on vacation. The other use case is the identification of leaks or theft in the unmetered common areas of apartment buildings. These two use cases are highly important to city authorities both because of the lost revenue they imply and because of the hassle to the residents in cases of delayed identification. Both cases are inherently complex to analyze and require advanced data mining techniques in order to achieve high levels of correct identification. Our results provide for faster and more accurate detection of malfunctioning meters as well as leaks in the common areas. This results in significant tangible value to the authorities in terms of increase in technician efficiency and a decrease in the amount of wasted, non-revenue, water.
公寓用水量先进计量基础设施数据分析
我们介绍了我们使用机器学习技术的经验,这些数据来自于一个中型城市的先进计量基础设施(AMI)系统。我们重点关注两个对市政当局特别重要的新用例。一个用例是自动识别故障仪表,重点是将它们与合法的非消费(例如在家庭居民度假期间)区分开来。另一个用例是在公寓楼的非计量公共区域识别泄漏或盗窃。这两个用例对市政当局来说非常重要,因为它们意味着收入损失,也因为在身份识别延迟的情况下给居民带来麻烦。这两种情况分析起来都很复杂,需要先进的数据挖掘技术才能实现高水平的正确识别。我们的结果提供了更快,更准确的检测故障仪表以及泄漏在公共区域。这给当局带来了显著的有形价值,提高了技术人员的效率,减少了浪费的、无收益的水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信