Saif Aldeen Ghafel H., Nasri Salh M. Namer, Abdul Jabbar H. Ali
{"title":"Mechanical Properties of Multi-Layer Woven E-Glass/Epoxy in Variable Fiber-Mat Directions","authors":"Saif Aldeen Ghafel H., Nasri Salh M. Namer, Abdul Jabbar H. Ali","doi":"10.51173/jt.v5i2.1176","DOIUrl":null,"url":null,"abstract":"In this research, the epoxy resin was reinforced by (16 layers) of E-glass fiber woven mat (0^°/90^°) with 50% weight fraction and total thickness (3mm). Using 16 layers was due to the absence of any previous study that used this number of layers at this thickness. It is considered a modern study of this style because of the rapid development in modern engineering industries that required lightweight composite materials with high strength and small thickness, which are used in the aerospace industry aviation and other precision engineering industries. The composite material was cut into angles (0^°,5^°,15^°,30^°,45^°) by using CNC water jet culling machine. The tensile test was used to determine the strength of a material ratio to the fiber's direction and by using Vickers hardness to determine the hardness of composite and pure epoxy. The result of pure epoxy (matrix) has the lowest value in tensile strength (σ_UTS), Yong's modulus (E), 0.2% proof yield stress (σ_(0.2%)), modulus of toughness and toughness when compared with a composite material with adding 16 layers of \"E-glass fibers\". The direction of the fibers with (5^°) of composite has the highest strength, Young's modulus, and 0.2% proof yield stress when compared with (0^°,15^°,30^°,45^°) and pure epoxy. The improvement strength (10.8, 11.8, 9.8, 8.5, 8.3 times) at (0^°,5^°,15^°,30^°,45^°) respectively when compared with pure epoxy. The hardness of composite material improved (220%) relative to pure epoxy. The results show that the best improvement of composite material with fiber's angle (5^°) has the highest results compared with pure epoxy.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i2.1176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, the epoxy resin was reinforced by (16 layers) of E-glass fiber woven mat (0^°/90^°) with 50% weight fraction and total thickness (3mm). Using 16 layers was due to the absence of any previous study that used this number of layers at this thickness. It is considered a modern study of this style because of the rapid development in modern engineering industries that required lightweight composite materials with high strength and small thickness, which are used in the aerospace industry aviation and other precision engineering industries. The composite material was cut into angles (0^°,5^°,15^°,30^°,45^°) by using CNC water jet culling machine. The tensile test was used to determine the strength of a material ratio to the fiber's direction and by using Vickers hardness to determine the hardness of composite and pure epoxy. The result of pure epoxy (matrix) has the lowest value in tensile strength (σ_UTS), Yong's modulus (E), 0.2% proof yield stress (σ_(0.2%)), modulus of toughness and toughness when compared with a composite material with adding 16 layers of "E-glass fibers". The direction of the fibers with (5^°) of composite has the highest strength, Young's modulus, and 0.2% proof yield stress when compared with (0^°,15^°,30^°,45^°) and pure epoxy. The improvement strength (10.8, 11.8, 9.8, 8.5, 8.3 times) at (0^°,5^°,15^°,30^°,45^°) respectively when compared with pure epoxy. The hardness of composite material improved (220%) relative to pure epoxy. The results show that the best improvement of composite material with fiber's angle (5^°) has the highest results compared with pure epoxy.
期刊介绍:
The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.