Discriminative Feature Transformation for Occluded Pedestrian Detection

Chunluan Zhou, Ming Yang, Junsong Yuan
{"title":"Discriminative Feature Transformation for Occluded Pedestrian Detection","authors":"Chunluan Zhou, Ming Yang, Junsong Yuan","doi":"10.1109/ICCV.2019.00965","DOIUrl":null,"url":null,"abstract":"Despite promising performance achieved by deep con- volutional neural networks for non-occluded pedestrian de- tection, it remains a great challenge to detect partially oc- cluded pedestrians. Compared with non-occluded pedes- trian examples, it is generally more difficult to distinguish occluded pedestrian examples from background in featue space due to the missing of occluded parts. In this paper, we propose a discriminative feature transformation which en- forces feature separability of pedestrian and non-pedestrian examples to handle occlusions for pedestrian detection. Specifically, in feature space it makes pedestrian exam- ples approach the centroid of easily classified non-occluded pedestrian examples and pushes non-pedestrian examples close to the centroid of easily classified non-pedestrian ex- amples. Such a feature transformation partially compen- sates the missing contribution of occluded parts in feature space, therefore improving the performance for occluded pedestrian detection. We implement our approach in the Fast R-CNN framework by adding one transformation net- work branch. We validate the proposed approach on two widely used pedestrian detection datasets: Caltech and CityPersons. Experimental results show that our approach achieves promising performance for both non-occluded and occluded pedestrian detection.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"327 1","pages":"9556-9565"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Despite promising performance achieved by deep con- volutional neural networks for non-occluded pedestrian de- tection, it remains a great challenge to detect partially oc- cluded pedestrians. Compared with non-occluded pedes- trian examples, it is generally more difficult to distinguish occluded pedestrian examples from background in featue space due to the missing of occluded parts. In this paper, we propose a discriminative feature transformation which en- forces feature separability of pedestrian and non-pedestrian examples to handle occlusions for pedestrian detection. Specifically, in feature space it makes pedestrian exam- ples approach the centroid of easily classified non-occluded pedestrian examples and pushes non-pedestrian examples close to the centroid of easily classified non-pedestrian ex- amples. Such a feature transformation partially compen- sates the missing contribution of occluded parts in feature space, therefore improving the performance for occluded pedestrian detection. We implement our approach in the Fast R-CNN framework by adding one transformation net- work branch. We validate the proposed approach on two widely used pedestrian detection datasets: Caltech and CityPersons. Experimental results show that our approach achieves promising performance for both non-occluded and occluded pedestrian detection.
遮挡行人检测的判别特征变换
尽管深度卷积神经网络在无遮挡行人检测方面取得了良好的效果,但检测部分遮挡行人仍然是一个巨大的挑战。与未遮挡的行人样例相比,由于遮挡部分的缺失,在特征空间中区分遮挡的行人样例与背景的难度较大。本文提出了一种判别特征变换方法,利用行人和非行人样本的特征可分离性来处理行人遮挡。具体来说,在特征空间中,它使行人检测样本接近易分类非遮挡行人样例的质心,并将非行人样例推向易分类非行人样例的质心。这种特征变换部分补偿了遮挡部分在特征空间中的缺失贡献,从而提高了遮挡行人检测的性能。我们在Fast R-CNN框架中通过增加一个转换网络分支来实现我们的方法。我们在两个广泛使用的行人检测数据集(Caltech和CityPersons)上验证了所提出的方法。实验结果表明,该方法在无遮挡和遮挡的行人检测中都取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信