Exploring Candlesticks and Multi-Time Windows for Forecasting Stock-Index Movements

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Kanghyeon Seo, Jihoon Yang
{"title":"Exploring Candlesticks and Multi-Time Windows for Forecasting Stock-Index Movements","authors":"Kanghyeon Seo, Jihoon Yang","doi":"10.1145/3555776.3577604","DOIUrl":null,"url":null,"abstract":"Stock-index movement prediction is an important research topic in FinTech because the index indicates the economic status of a whole country. With a set of daily candlesticks of the stock-index, investors could gain a meaningful basis for the prediction of the next day's movement. This paper proposes a stock-index price-movement prediction model, Combined Time-View TabNet (CTV-TabNet), a novel approach that utilizes attributes of the candlesticks data with multi-time windows. Our model comprises three modules: TabNet encoder, gated recurrent unit with a sequence control, and multi-time combiner. They work together to forecast the movements based on the sequential attributes of the candlesticks. CTV-TabNet not only outperforms baseline models in prediction performance on 20 stock-indices of 14 different countries but also yields higher returns of index-futures trading simulations when compared to the baselines. Additionally, our model provides comprehensive interpretations of the stock-index related to its inherent properties in predictive performance.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Stock-index movement prediction is an important research topic in FinTech because the index indicates the economic status of a whole country. With a set of daily candlesticks of the stock-index, investors could gain a meaningful basis for the prediction of the next day's movement. This paper proposes a stock-index price-movement prediction model, Combined Time-View TabNet (CTV-TabNet), a novel approach that utilizes attributes of the candlesticks data with multi-time windows. Our model comprises three modules: TabNet encoder, gated recurrent unit with a sequence control, and multi-time combiner. They work together to forecast the movements based on the sequential attributes of the candlesticks. CTV-TabNet not only outperforms baseline models in prediction performance on 20 stock-indices of 14 different countries but also yields higher returns of index-futures trading simulations when compared to the baselines. Additionally, our model provides comprehensive interpretations of the stock-index related to its inherent properties in predictive performance.
探索烛台和多时间窗口预测股指走势
股指走势预测是金融科技领域的一个重要研究课题,因为股指反映了一个国家的经济状况。有了一套每日的股指烛台,投资者就可以为预测第二天的走势提供一个有意义的基础。本文提出了一种利用多时间窗口烛台数据属性的股指价格走势预测模型——组合时间-视图TabNet (Combined Time-View TabNet, CTV-TabNet)。我们的模型包括三个模块:TabNet编码器、带序列控制的门控循环单元和多时间组合器。他们一起工作,根据烛台的顺序属性来预测运动。CTV-TabNet不仅在14个不同国家的20个股票指数的预测表现上优于基准模型,而且与基准模型相比,指数期货交易模拟的回报率更高。此外,我们的模型提供了与股票指数在预测性能中的固有属性相关的全面解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信