{"title":"A novel self-constructing evolution algorithm for TSK-type fuzzy model design","authors":"Sheng-Fuu Lin, Jyun-Wei Chang, Yi-Chang Cheng, Yung-Chi Hsu","doi":"10.1109/CEC.2010.5586205","DOIUrl":null,"url":null,"abstract":"In this paper, a novel self-constructing evolution algorithm (SCEA) for TSK-type fuzzy model (TFM) design is proposed. The proposed SCEA method is different from the traditional genetic algorithms (GA). A chromosome of the population in GA represents a full solution and only one population presents all solutions. Our method applies a population to evaluate a partial solution locally, and several populations to construct the full solution. Thus, a chromosome represents only partial solution. The proposed SCEA uses the self-constructing learning algorithm to construct the TFM automatically that is based on the input data to decide the input partition. And we also adopted the sequence search-based dynamic evolution (SSDE) method to perform parameter learning. Simulation results have shown that the proposed SCEA method obtains better performance than some existing models.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5586205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel self-constructing evolution algorithm (SCEA) for TSK-type fuzzy model (TFM) design is proposed. The proposed SCEA method is different from the traditional genetic algorithms (GA). A chromosome of the population in GA represents a full solution and only one population presents all solutions. Our method applies a population to evaluate a partial solution locally, and several populations to construct the full solution. Thus, a chromosome represents only partial solution. The proposed SCEA uses the self-constructing learning algorithm to construct the TFM automatically that is based on the input data to decide the input partition. And we also adopted the sequence search-based dynamic evolution (SSDE) method to perform parameter learning. Simulation results have shown that the proposed SCEA method obtains better performance than some existing models.