On the maximal displacement of catalytic branching random walk

E. Bulinskaya
{"title":"On the maximal displacement of catalytic branching random walk","authors":"E. Bulinskaya","doi":"10.33048/semi.2020.17.082","DOIUrl":null,"url":null,"abstract":"We study the distribution of the maximal displacement of particles positions for the whole time of the population existence in the model of critical and subcritical catalytic branching random walk on Z. In particular, we prove that in the case of simple symmetric random walk on Z, the distribution of the maximal displacement has \"a heavy tail\" decreasing as a function of the power 1/2 or 1, when the branching process is critical or subcritical, respectively. These statements describe new effects which do not arise in the corresponding investigations of the maximal displacement of critical and subcritical branching random walks on Z.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2020.17.082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the distribution of the maximal displacement of particles positions for the whole time of the population existence in the model of critical and subcritical catalytic branching random walk on Z. In particular, we prove that in the case of simple symmetric random walk on Z, the distribution of the maximal displacement has "a heavy tail" decreasing as a function of the power 1/2 or 1, when the branching process is critical or subcritical, respectively. These statements describe new effects which do not arise in the corresponding investigations of the maximal displacement of critical and subcritical branching random walks on Z.
催化分支随机游走的最大位移
研究了Z上临界和亚临界催化分支随机游动模型中粒子位置的最大位移在种群存在的整个时间内的分布,特别是证明了Z上简单对称随机游动的情况下,当分支过程分别为临界或亚临界时,最大位移的分布具有“重尾”,随幂次1/2或1递减。这些表述描述了在Z上临界和亚临界分支随机游动的最大位移的相应研究中没有出现的新效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信