Digital AFC control of a three-phase three-wire unity-power-factor PWM rectifier

Marcos Orellana, R. Griñó
{"title":"Digital AFC control of a three-phase three-wire unity-power-factor PWM rectifier","authors":"Marcos Orellana, R. Griñó","doi":"10.1109/ASCC.2013.6606312","DOIUrl":null,"url":null,"abstract":"Nowadays, ac/dc power converters must fulfill more and more design constraints with respect to the electrical grid: harmonics reduction, operation with sags and swells and/or high grid impedances, etc. This is a challenge for the controllers, since they must be robust enough to ensure the stability of the system, specially when working the conditions are not the ideal ones. In this paper, a discrete-time control technique based on Adaptive Feed-forward Cancellation (AFC) is proposed for a three-phase three-wire rectifier with a LCL input filter. The continuous-time design method for resonators has been translated into the discrete-time domain. Thus, the controller has been entirely designed in discrete-time, avoiding approximate conversions of the controller from the continuous-time domain. Besides, the usual unit computational delay in sampled-data control systems is taken into account. The simulation results show that this kind of resonant control is not only robust, but also presents a good performance.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, ac/dc power converters must fulfill more and more design constraints with respect to the electrical grid: harmonics reduction, operation with sags and swells and/or high grid impedances, etc. This is a challenge for the controllers, since they must be robust enough to ensure the stability of the system, specially when working the conditions are not the ideal ones. In this paper, a discrete-time control technique based on Adaptive Feed-forward Cancellation (AFC) is proposed for a three-phase three-wire rectifier with a LCL input filter. The continuous-time design method for resonators has been translated into the discrete-time domain. Thus, the controller has been entirely designed in discrete-time, avoiding approximate conversions of the controller from the continuous-time domain. Besides, the usual unit computational delay in sampled-data control systems is taken into account. The simulation results show that this kind of resonant control is not only robust, but also presents a good performance.
三相三线制单位功率因数PWM整流器的数字AFC控制
如今,交流/直流电源变换器必须满足越来越多的电网设计约束:谐波降低,运行与下垂和膨胀和/或高电网阻抗等。这对控制器来说是一个挑战,因为它们必须足够鲁棒以确保系统的稳定性,特别是在工作条件不是理想的情况下。针对带LCL输入滤波器的三相三线制整流器,提出了一种基于自适应前馈抵消(AFC)的离散时间控制技术。将谐振器的连续时间设计方法转化为离散时间域。因此,控制器完全在离散时间内设计,避免了控制器从连续时间域的近似转换。此外,还考虑了采样数据控制系统中常见的单元计算延迟。仿真结果表明,这种谐振控制不仅具有鲁棒性,而且具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信