{"title":"Dissipative phase transitions in the fully connected Ising model with \np\n-spin interaction","authors":"Pei Wang, R. Fazio","doi":"10.1103/PHYSREVA.103.013306","DOIUrl":null,"url":null,"abstract":"In this paper, we study the driven-dissipative p-spin models for $p\\geq 2$. In thermodynamics limit, the equation of motion is derived by using a semiclassical approach. The long-time asymptotic states are obtained analytically, which exhibit multi-stability in some regions of the parameter space. The steady state is unique as the number of spins is finite. But the thermodynamic limit of the steady-state magnetization displays nonanalytic behavior somewhere inside the semiclassical multi-stable region. We find both the first-order and continuous dissipative phase transitions. As the number of spins increases, both the Liouvillian gap and magnetization variance vanish according to a power law at the continuous transition. At the first-order transition, the gap vanishes exponentially accompanied by a jump of magnetization in thermodynamic limit. The properties of transitions depend on the symmetry and semiclassical multistability, being qualitatively different among $p=2$, odd $p$ ($p\\geq 3$) and even $p$ ($p\\geq 4$).","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.013306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
In this paper, we study the driven-dissipative p-spin models for $p\geq 2$. In thermodynamics limit, the equation of motion is derived by using a semiclassical approach. The long-time asymptotic states are obtained analytically, which exhibit multi-stability in some regions of the parameter space. The steady state is unique as the number of spins is finite. But the thermodynamic limit of the steady-state magnetization displays nonanalytic behavior somewhere inside the semiclassical multi-stable region. We find both the first-order and continuous dissipative phase transitions. As the number of spins increases, both the Liouvillian gap and magnetization variance vanish according to a power law at the continuous transition. At the first-order transition, the gap vanishes exponentially accompanied by a jump of magnetization in thermodynamic limit. The properties of transitions depend on the symmetry and semiclassical multistability, being qualitatively different among $p=2$, odd $p$ ($p\geq 3$) and even $p$ ($p\geq 4$).