Convergence rates of theta-method for NSDDEs under non-globally Lipschitz continuous coefficients

IF 1.1 2区 数学 Q1 MATHEMATICS
L. Tan, C. Yuan
{"title":"Convergence rates of theta-method for NSDDEs under non-globally Lipschitz continuous coefficients","authors":"L. Tan, C. Yuan","doi":"10.1142/S1664360719500061","DOIUrl":null,"url":null,"abstract":"This paper is concerned with strong convergence and almost sure convergence for neutral stochastic differential delay equations under non-globally Lipschitz continuous coefficients. Convergence rates of [Formula: see text]-EM schemes are given for these equations driven by Brownian motion and pure jumps, respectively, where the drift terms satisfy locally one-sided Lipschitz conditions, and diffusion coefficients obey locally Lipschitz conditions, and the corresponding coefficients are highly nonlinear with respect to the delay terms.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"51 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1664360719500061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

This paper is concerned with strong convergence and almost sure convergence for neutral stochastic differential delay equations under non-globally Lipschitz continuous coefficients. Convergence rates of [Formula: see text]-EM schemes are given for these equations driven by Brownian motion and pure jumps, respectively, where the drift terms satisfy locally one-sided Lipschitz conditions, and diffusion coefficients obey locally Lipschitz conditions, and the corresponding coefficients are highly nonlinear with respect to the delay terms.
非全局Lipschitz连续系数下NSDDEs的theta法的收敛速率
研究中立型随机微分时滞方程在非全局Lipschitz连续系数下的强收敛性和几乎肯定收敛性。分别给出了由布朗运动和纯跳变驱动的方程组的em格式的收敛速率,其中漂移项满足局部单侧Lipschitz条件,扩散系数服从局部Lipschitz条件,相应的系数相对于延迟项是高度非线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
17
审稿时长
13 weeks
期刊介绍: The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited. The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信