L. Augugliaro, G. Sottile, E. C. Wit, V. Vinciotti
{"title":"cglasso: An R Package for Conditional Graphical Lasso Inference with Censored and Missing Values","authors":"L. Augugliaro, G. Sottile, E. C. Wit, V. Vinciotti","doi":"10.18637/jss.v105.i01","DOIUrl":null,"url":null,"abstract":"Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse conditional Gaussian graphical models with potentially missing or censored data. The method employs an efficient expectation-maximization estimation of an l1-penalized likelihood via a block-coordinate descent algorithm. The package has a user-friendly data manipulation interface. It estimates a solution path and includes various automatic selection algorithms for the two l1 tuning parameters, associated with the sparse precision matrix and sparse regression coefficients, respectively. The package pays particular attention to the visualization of the results, both by means of marginal tables and figures, and of the inferred conditional independence graphs. This package provides a unique and computational efficient implementation of a conditional Gaussian graphical model that is able to deal with the additional complications of missing and censored data. As such it constitutes an important contribution for empirical scientists wishing to detect sparse structures in high-dimensional data.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v105.i01","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse graphical models have revolutionized multivariate inference. With the advent of high-dimensional multivariate data in many applied fields, these methods are able to detect a much lower-dimensional structure, often represented via a sparse conditional independence graph. There have been numerous extensions of such methods in the past decade. Many practical applications have additional covariates or suffer from missing or censored data. Despite the development of these extensions of sparse inference methods for graphical models, there have been so far no implementations for, e.g., conditional graphical models. Here we present the general-purpose package cglasso for estimating sparse conditional Gaussian graphical models with potentially missing or censored data. The method employs an efficient expectation-maximization estimation of an l1-penalized likelihood via a block-coordinate descent algorithm. The package has a user-friendly data manipulation interface. It estimates a solution path and includes various automatic selection algorithms for the two l1 tuning parameters, associated with the sparse precision matrix and sparse regression coefficients, respectively. The package pays particular attention to the visualization of the results, both by means of marginal tables and figures, and of the inferred conditional independence graphs. This package provides a unique and computational efficient implementation of a conditional Gaussian graphical model that is able to deal with the additional complications of missing and censored data. As such it constitutes an important contribution for empirical scientists wishing to detect sparse structures in high-dimensional data.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.