UNEXPECTED CURVES IN ℙ2, LINE ARRANGEMENTS, AND MINIMAL DEGREE OF JACOBIAN RELATIONS

IF 0.3 4区 数学 Q4 MATHEMATICS
A. Dimca
{"title":"UNEXPECTED CURVES IN ℙ2, LINE ARRANGEMENTS, AND MINIMAL DEGREE OF JACOBIAN RELATIONS","authors":"A. Dimca","doi":"10.1216/jca.2023.15.15","DOIUrl":null,"url":null,"abstract":"We reformulate a fundamental result due to Cook, Harbourne, Migliore and Nagel on the existence and irreduciblity of unexpected plane curves of a set of points Z in P2, using the minimal degree of a Jacobian syzygy of the defining equation for the dual line arrangement AZ . Several applications of this new approach are given. In particular, we show that the irreducible unexpected quintics may occur only when the set Z has the cardinality equal to 11 or 12, and describe five cases where this happens.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"90 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2023.15.15","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We reformulate a fundamental result due to Cook, Harbourne, Migliore and Nagel on the existence and irreduciblity of unexpected plane curves of a set of points Z in P2, using the minimal degree of a Jacobian syzygy of the defining equation for the dual line arrangement AZ . Several applications of this new approach are given. In particular, we show that the irreducible unexpected quintics may occur only when the set Z has the cardinality equal to 11 or 12, and describe five cases where this happens.
未知的曲线,线的排列,以及雅可比矩阵关系的最小程度
我们利用对偶线排列AZ的定义方程的雅可比合集的最小度,重新表述了Cook, Harbourne, Migliore和Nagel关于P2中一组点Z的非预期平面曲线的存在性和不可约性的基本结果。给出了这种新方法的几种应用。特别地,我们证明了不可约的非预期五项只有在集合Z的基数等于11或12时才可能发生,并描述了这种情况发生的五种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信