Random amenable C*-algebras

IF 0.6 3区 数学 Q3 MATHEMATICS
Bhishan Jacelon
{"title":"Random amenable C*-algebras","authors":"Bhishan Jacelon","doi":"10.1017/S0305004123000178","DOIUrl":null,"url":null,"abstract":"Abstract What is the probability that a random UHF algebra is of infinite type? What is the probability that a random simple AI algebra has at most k extremal traces? What is the expected value of the radius of comparison of a random Villadsen-type AH algebra? What is the probability that such an algebra is \n$\\mathcal{Z}$\n -stable? What is the probability that a random Cuntz–Krieger algebra is purely infinite and simple, and what can be said about the distribution of its K-theory? By constructing \n$\\mathrm{C}^*$\n -algebras associated with suitable random (walks on) graphs, we provide context in which these are meaningful questions with computable answers.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract What is the probability that a random UHF algebra is of infinite type? What is the probability that a random simple AI algebra has at most k extremal traces? What is the expected value of the radius of comparison of a random Villadsen-type AH algebra? What is the probability that such an algebra is $\mathcal{Z}$ -stable? What is the probability that a random Cuntz–Krieger algebra is purely infinite and simple, and what can be said about the distribution of its K-theory? By constructing $\mathrm{C}^*$ -algebras associated with suitable random (walks on) graphs, we provide context in which these are meaningful questions with computable answers.
随机可服从C*-代数
一个随机的超高频代数是无限型的概率是多少?一个随机的简单人工智能代数最多有k个极值轨迹的概率是多少?一个随机villadsen型AH代数的比较半径的期望值是多少?这样一个代数$\math {Z}$稳定的概率是多少?一个随机的康茨-克里格代数是纯粹无限和简单的概率是多少,关于它的k理论的分布我们能说些什么?通过构造$\ mathm {C}^*$ -代数与合适的随机(在图上行走)相关联,我们提供了上下文,其中这些是具有可计算答案的有意义的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信